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Introduction

The Information Security Lab
– 11 linux workstations, 1 infrastructure server
– connected to the regular ETH LAN
– traffic from and to the lab reduced to the necessary minimum
– about 1500 HTTP requests per hour
– infrastructure overview:
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Introduction

Purpose
– many “dangerous” tools and techniques are utilized in the lab

● example 1: crash a web server with specially crafted HTTP 
requests

● example 2: inject undesired content into a back-end database 
with SQL injections

– due to malicious or careless operation, damage might be 
caused to external resources...

– but basic internet access is an important requirement for the 
course students.

➔ protect external resources from (unintended) malicious 
activities!!
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Introduction

Basic Principle
➔ no unvalidated client-provided information (query strings, 

header fields, ...) is forwarded to an external resource
– access is only granted to “known” URLs that have been 

identified on previously requested HTML pages, or URLs 
contained in a whitelist.

– passing data via GET or POST is only allowed for selected 
resources, and data is validated in a strict manner before being 
sent to an external resource.
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Design & Specification

First Approach
– use an internal data structure to store URLs “seen” so far...
– ...and rewrite URLs to locate them in the data structure when 

they are requested.
– downsides:

● is re-writing the URLs really necessary...?
● memory usage just grows and grows... some sort of garbage 

collection is required...
● ... but then, requests may be wrongly denied because the respective 

URL has already been collected. Only an oracle could prevent this.
● this is especially a problem for bookmarks
● restarts even completely destroy the list

➔ rewrite URLs so that fact that proxy has seen them is stored as 
part of the URL!
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Design & Specification

Cryptogarphic Primitives
– a HMAC generated by a keyed hash function guarantees 

message authenticity and integrity
➔ use HMAC tickets to flag URLs as “known”!

– when the URL is later requested, the proxy checks correctness 
of the attached HMAC ticket.

http://example.com/foo.html

http://example.com/foo.html
{a7b29c....38ad}

proxy
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Design & Specification

Architecture (1)
– Tickets: All URLs identified in a fetched HTML document are 

tagged.
– Rule List: A list of URLs where access is always granted or 

denied, regardless of the existence of a ticket.
– rule format:

● URL(s) the rule will be applied to
● target (allow or deny)
● name and description for informational purposes
● optional set of parameters as input for the Data Handlers (see next 

slide)
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Design & Specification

Architecture (2)
– Data Handlers: For selected resources, clients are allowed to 

pass values. For those resources, Client Data Handlers 
identify, parse, and validate client-provided data.

– allowed client-provided data is described by parameters of a 
rule:

● parameter name
● legal range for the according value
● HTTP method (GET or POST)
● an optional “required” attribute if the parameter is to be present.
➔ particularly useful for x-www-urlencoded data, less suited or not 

applicable for other formats
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Design & Specification

Architecture (3)
– sample Rule for Google:
<rule target="allow">

<name>google searches</name>

<description>this rule allows to search

        google.</description>

<url>http://www.google.ch/search</url>

<param method="get">

<pname>hl</pname>

<pvalue>^(en|de|fr|it)$</pvalue>

</param>

<param method="get" required="required">

<pname>q</pname>

<pvalue>^[a-zA-Z0-9\+%]+$</pvalue>

</param>

...

</rule>
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Design & Specification

Architecture (4)
– proxy actions: the first matching rule will be applied.
1. if a matching denying rule is found, the request is blocked.
2. if a matching allowing rule is found, the request is forwarded.      

The rule's client data handler ensures that client-provided data 
matches the parameter set defined for the rule. If present, a ticket 
attached to the URL will be removed.

3. if a valid ticket is present, the request is forwarded. The ticket is 
removed.

4. the request is blocked.
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Design & Specification

Architecture (5)
– header fields also contain client-provided information, and may 

cause harm to an external resource
– possible actions for header fields:

● forward the header as-is without any checks. This should generally 
be avoided since it violates the basic rule, but is sometimes 
required by the RFC.

● forward the field after having checked its correctness. Correctness 
can be checked semantically or syntactically.

● replace the field value provided by the client by a pre-defined default 
value. This makes sense for values that are known in advance.

● remove the header field. This is reasonable for fields that are not 
required by the external resource to fulfil a request.

– trade-off between RFC compliance and requirements...
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Design & Specification

URL rewriting
– URL format:
"http://" <host>[":"<port>] "/" [<path>]

   ["?"<searchstring>]["#"<reference>]

– rewritten URL format:
"http://" <host>[":"<port>] "/" [<path>]

   ["?"<searchstring>] "{"<ticket>"}" ["#"<reference>]

– “{“ and “}” have to be encoded. Other marker strings or even no 
markers could also be used. Using markers is convenient since 
not all hash functions produce output of the same lenth.
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Design & Specification

Deficiencies (1)
– HTTPS with “normal” proxies: the CONNECT mechanism

● arbitrary TCP connections can be tunneled!
● parsing of incoming HTML documents not possible!

– solutions on following slides were not implemented for reasons 
of time.
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Design & Specification

Deficiencies (2)
– HTTPS solution 1: HTTPS between proxy and server

● connection between client and proxy not secure
● user agents may refuse Redirections for CONNECT requests
● not user friendly
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Design & Specification

Deficiencies (3)
– HTTPS solution 2: Split secure connection at proxy

● Man-in-the-Middle-Attack! Can be made transparent for client with 
Certification Authority as part of the proxy.

● no secure end-to-end semantics!
● expensive cryptographic operations (DoS attacks...)
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Design & Specification

Deficiencies (4)
– proxying FTP: FTP uses an URL scheme very similar to HTTP
– many HTTP proxies support “pseudo-FTP” where FTP requests 

from the client are sent to the proxy via HTTP, and the FTP-
server's replies are translated into HTML by the proxy. This 
mechanism could be extended to include the HMAC tickets in 
the translated HTML reply.

– but this is not “real” FTP! Web browsers will understand it, but 
most FTP clients won't.

– I therefore suggest the use of a secure FTP proxy. If FTP 
access to external resources is not needed, the FTP protocol 
can be blocked entirely. 
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Design & Specification

Deficiencies (5)
– missing links: the proxy may fail to identify links on an incoming 

page for several reasons:
● invalid HTML syntax, e.g. missing double qoutes around the 

HREF element. Example for horrible HTML: Google. This can 
be handled to some degree by fault-tolerant parsing.

● URLs not contained in source but generated dynamically, e.g. 
by JavaScript. This seems almost impossible to handle, but 
these cases are seldom.

– direct access to web pages not possible, form submission not 
possible

● not design flaws, this follows from the requirements
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Implementation

Existing Software
– requirements in order of assigned importance:

● flexibility and Modularity of the Software
● code Safety: type safety, garbage collection, etc.
● documentation
● stability and Performance
● license and Source: product should be free and, if possible, open-

source
● ease of use
● portability

– I began with evaluating Apache's mod_proxy and Squid...
– ...but soon realized that understanding and altering the C-based 

source will be very tedious and time-consuming
– Java on the other hand offers object oriented programming, 

type safety, automatic garbage collection...
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Implementation

Details of the underlying Software (1)
– PAW: Pro-Active Web Proxy
+ easy extension through plug-in classes
+ well documented
+ written entirely in Java
+ GNU GPL licensed
+ Administration via GUI

or XML config files
-  Not widely used, so 

bugs might go un-
noticed for a long
time
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Implementation

Details of the underlying Software (2)
– PAW is based on SUN's Brazil Framework
– Brazil began as an URL based interface for smartcards

● evolved into a complete HTTP 
stack with a small footprint

● completely in Java
● two most important entities: 

Server and Request
● Server handles Requests 

with plug-in Handler classes 
➔ very flexible architecture

● many Handlers are already provided
● Filters are a special case of Handlers used to modify content
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Implementation

Plugin Design

proxy

C
lient

W
eb Server

ParanoidHandler

ParanoidFilter

ruleManager

secret

XML 
rule file

Requests

static
MessageDigest

HTML Files

●grants or denies requests based on
 rules and presence of tickets
●sanitizes headers
●strips tickets off requests

●parses incoming HTML files
●adds ticket to identified URLs
●uses regExp for parsing



25

Information Security Group
Prof. Dr. David Basin

Overview

Introduction
– The Information Security Lab
– Purpose
– Basic Principle

Design & Specification
– First Approach
– Cryptographic Primitives
– Architecture
– URL rewriting
– Deficiencies

Implementation
– Existing Software
– Details of the underlying 

Proxy Software
– Plugin Design

Results
– Security Considerations
– Performance
– Future Work

Q&A



26

Information Security Group
Prof. Dr. David Basin

Results

Security Considerations (1)
– mainly designed to prevent unintended malicious activity

● does not prevent a user from requesting a “dangerous” URL already 
present on an external web page

● does not protect users from malicious content on requested pages
– Brute Force Attacks:

● cracking secret key allows access to arbitrary URLs. 
● attacker can generate many input/output pairs for hash function
● but “good” hash functions are “secure” even if many input/output 

pairs are known
● periodical changes of secret would reduce amount of known pairs 

but also impact functionality
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Results

Security Considerations (2)
– stealing the secret key:

● in principle, all handlers and filters have access to the config file 
and hence, the secret key

● they could even disable the ParanoidProxy handlers by editiing the 
config file

➔ only handlers and filters from trusted sources should be 
installed

– reflecting URLs
● example: user enters <a href="some malicous url"> as user 

name in a login form, and the web site replies, user <a 
href="some malicious url"> is not known, try again. The 
URL is recognized by the proxy and tagged with a ticket.

➔ allowed parameter values should be reasoned, e.g., '<>' not  
allowed
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Performance (1)
– Web Polygraph was used for performance measurements

● allows to model lots of assumptions
● simulates HTML content (important when testing parsers etc.)

– different test cases:
● realistic model with low traffic volumes (0.6 requests/s), small files, 

and mixed content
● large HTML files to measure response time increase introduced by 

parsing
● best effort method

– slow-down was distinctly measurable in all test cases
● response times increased by factor 3 in first case (now ~60 msec)
● factor can go up to 20 or above for large files
● throughput reduced by factor 3.5 in best effort mode (now ~4 MBit/s)

Results
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Performance (2)

– conclusion: performance is sufficient for use in lab, but should 
be improved for use in larger environments

● implementation: code optimizations
● design: inclusion of a cache for rewritten pages

Results

response time distribution,
filter off (first test case)

response time distribution
filter on (first test case)
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Results

Future Work
– integration of SSL support
– integration of a cache for improved performance
– more generic rule list

● currently on a per-URL-basis
● no wildcards allowed
● no IP-address based rules

– easier Administration
● rule administration currently done by editing XML files
● rule list not loaded if rule file has syntax errors
● helper application could write rule file based on inputs to a GUI
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Questions?

– report, software, javadoc and additional material available @
http://n.ethz.ch/~fuchsd/proxy/

– thanks for your attention!


