
1

Information Security Group
Prof. Dr. David Basin

Semester Thesis

Design & Implementation of a
Rewriting Forward Proxy

March 22, 2005

David Fuchs
fuchsd@student.ethz.ch

Supervision:
Michael Näf

2

Information Security Group
Prof. Dr. David Basin

Overview

Introduction
– The Information Security Lab
– Purpose
– Basic Principle

Design & Specification
– First Approach
– Cryptographic Primitives
– Architecture
– URL rewriting
– Deficiencies

Implementation
– Existing Software
– Details of the underlying

Proxy Software
– Plugin Design

Results
– Security Considerations
– Performance
– Future Work

Q&A

3

Information Security Group
Prof. Dr. David Basin

Introduction

The Information Security Lab
– 11 linux workstations, 1 infrastructure server
– connected to the regular ETH LAN
– traffic from and to the lab reduced to the necessary minimum
– about 1500 HTTP requests per hour
– infrastructure overview:

4

Information Security Group
Prof. Dr. David Basin

Introduction

Purpose
– many “dangerous” tools and techniques are utilized in the lab

● example 1: crash a web server with specially crafted HTTP
requests

● example 2: inject undesired content into a back-end database
with SQL injections

– due to malicious or careless operation, damage might be
caused to external resources...

– but basic internet access is an important requirement for the
course students.

➔ protect external resources from (unintended) malicious
activities!!

5

Information Security Group
Prof. Dr. David Basin

Introduction

Basic Principle
➔ no unvalidated client-provided information (query strings,

header fields, ...) is forwarded to an external resource
– access is only granted to “known” URLs that have been

identified on previously requested HTML pages, or URLs
contained in a whitelist.

– passing data via GET or POST is only allowed for selected
resources, and data is validated in a strict manner before being
sent to an external resource.

6

Information Security Group
Prof. Dr. David Basin

Overview

Introduction
– The Information Security Lab
– Purpose
– Basic Principle

Design & Specification
– First Approach
– Cryptographic Primitives
– Architecture
– URL rewriting
– Deficiencies

Implementation
– Existing Software
– Details of the underlying

Proxy Software
– Plugin Design

Results
– Security Considerations
– Performance
– Future Work

Q&A

7

Information Security Group
Prof. Dr. David Basin

Design & Specification

First Approach
– use an internal data structure to store URLs “seen” so far...
– ...and rewrite URLs to locate them in the data structure when

they are requested.
– downsides:

● is re-writing the URLs really necessary...?
● memory usage just grows and grows... some sort of garbage

collection is required...
● ... but then, requests may be wrongly denied because the respective

URL has already been collected. Only an oracle could prevent this.
● this is especially a problem for bookmarks
● restarts even completely destroy the list

➔ rewrite URLs so that fact that proxy has seen them is stored as
part of the URL!

8

Information Security Group
Prof. Dr. David Basin

Design & Specification

Cryptogarphic Primitives
– a HMAC generated by a keyed hash function guarantees

message authenticity and integrity
➔ use HMAC tickets to flag URLs as “known”!

– when the URL is later requested, the proxy checks correctness
of the attached HMAC ticket.

http://example.com/foo.html

http://example.com/foo.html
{a7b29c....38ad}

proxy

9

Information Security Group
Prof. Dr. David Basin

Design & Specification

Architecture (1)
– Tickets: All URLs identified in a fetched HTML document are

tagged.
– Rule List: A list of URLs where access is always granted or

denied, regardless of the existence of a ticket.
– rule format:

● URL(s) the rule will be applied to
● target (allow or deny)
● name and description for informational purposes
● optional set of parameters as input for the Data Handlers (see next

slide)

10

Information Security Group
Prof. Dr. David Basin

Design & Specification

Architecture (2)
– Data Handlers: For selected resources, clients are allowed to

pass values. For those resources, Client Data Handlers
identify, parse, and validate client-provided data.

– allowed client-provided data is described by parameters of a
rule:

● parameter name
● legal range for the according value
● HTTP method (GET or POST)
● an optional “required” attribute if the parameter is to be present.
➔ particularly useful for x-www-urlencoded data, less suited or not

applicable for other formats

11

Information Security Group
Prof. Dr. David Basin

Design & Specification

Architecture (3)
– sample Rule for Google:
<rule target="allow">

<name>google searches</name>

<description>this rule allows to search

 google.</description>

<url>http://www.google.ch/search</url>

<param method="get">

<pname>hl</pname>

<pvalue>^(en|de|fr|it)$</pvalue>

</param>

<param method="get" required="required">

<pname>q</pname>

<pvalue>^[a-zA-Z0-9\+%]+$</pvalue>

</param>

...

</rule>

12

Information Security Group
Prof. Dr. David Basin

Design & Specification

Architecture (4)
– proxy actions: the first matching rule will be applied.
1. if a matching denying rule is found, the request is blocked.
2. if a matching allowing rule is found, the request is forwarded.

The rule's client data handler ensures that client-provided data
matches the parameter set defined for the rule. If present, a ticket
attached to the URL will be removed.

3. if a valid ticket is present, the request is forwarded. The ticket is
removed.

4. the request is blocked.

13

Information Security Group
Prof. Dr. David Basin

Design & Specification

Architecture (5)
– header fields also contain client-provided information, and may

cause harm to an external resource
– possible actions for header fields:

● forward the header as-is without any checks. This should generally
be avoided since it violates the basic rule, but is sometimes
required by the RFC.

● forward the field after having checked its correctness. Correctness
can be checked semantically or syntactically.

● replace the field value provided by the client by a pre-defined default
value. This makes sense for values that are known in advance.

● remove the header field. This is reasonable for fields that are not
required by the external resource to fulfil a request.

– trade-off between RFC compliance and requirements...

14

Information Security Group
Prof. Dr. David Basin

Design & Specification

URL rewriting
– URL format:
"http://" <host>[":"<port>] "/" [<path>]

 ["?"<searchstring>]["#"<reference>]

– rewritten URL format:
"http://" <host>[":"<port>] "/" [<path>]

 ["?"<searchstring>] "{"<ticket>"}" ["#"<reference>]

– “{“ and “}” have to be encoded. Other marker strings or even no
markers could also be used. Using markers is convenient since
not all hash functions produce output of the same lenth.

15

Information Security Group
Prof. Dr. David Basin

Design & Specification

Deficiencies (1)
– HTTPS with “normal” proxies: the CONNECT mechanism

● arbitrary TCP connections can be tunneled!
● parsing of incoming HTML documents not possible!

– solutions on following slides were not implemented for reasons
of time.

16

Information Security Group
Prof. Dr. David Basin

Design & Specification

Deficiencies (2)
– HTTPS solution 1: HTTPS between proxy and server

● connection between client and proxy not secure
● user agents may refuse Redirections for CONNECT requests
● not user friendly

17

Information Security Group
Prof. Dr. David Basin

Design & Specification

Deficiencies (3)
– HTTPS solution 2: Split secure connection at proxy

● Man-in-the-Middle-Attack! Can be made transparent for client with
Certification Authority as part of the proxy.

● no secure end-to-end semantics!
● expensive cryptographic operations (DoS attacks...)

18

Information Security Group
Prof. Dr. David Basin

Design & Specification

Deficiencies (4)
– proxying FTP: FTP uses an URL scheme very similar to HTTP
– many HTTP proxies support “pseudo-FTP” where FTP requests

from the client are sent to the proxy via HTTP, and the FTP-
server's replies are translated into HTML by the proxy. This
mechanism could be extended to include the HMAC tickets in
the translated HTML reply.

– but this is not “real” FTP! Web browsers will understand it, but
most FTP clients won't.

– I therefore suggest the use of a secure FTP proxy. If FTP
access to external resources is not needed, the FTP protocol
can be blocked entirely.

19

Information Security Group
Prof. Dr. David Basin

Design & Specification

Deficiencies (5)
– missing links: the proxy may fail to identify links on an incoming

page for several reasons:
● invalid HTML syntax, e.g. missing double qoutes around the

HREF element. Example for horrible HTML: Google. This can
be handled to some degree by fault-tolerant parsing.

● URLs not contained in source but generated dynamically, e.g.
by JavaScript. This seems almost impossible to handle, but
these cases are seldom.

– direct access to web pages not possible, form submission not
possible

● not design flaws, this follows from the requirements

20

Information Security Group
Prof. Dr. David Basin

Overview

Introduction
– The Information Security Lab
– Purpose
– Basic Principle

Design & Specification
– First Approach
– Cryptographic Primitives
– Architecture
– URL rewriting
– Deficiencies

Implementation
– Existing Software
– Details of the underlying

Proxy Software
– Plugin Design

Results
– Security Considerations
– Performance
– Future Work

Q&A

21

Information Security Group
Prof. Dr. David Basin

Implementation

Existing Software
– requirements in order of assigned importance:

● flexibility and Modularity of the Software
● code Safety: type safety, garbage collection, etc.
● documentation
● stability and Performance
● license and Source: product should be free and, if possible, open-

source
● ease of use
● portability

– I began with evaluating Apache's mod_proxy and Squid...
– ...but soon realized that understanding and altering the C-based

source will be very tedious and time-consuming
– Java on the other hand offers object oriented programming,

type safety, automatic garbage collection...

22

Information Security Group
Prof. Dr. David Basin

Implementation

Details of the underlying Software (1)
– PAW: Pro-Active Web Proxy
+ easy extension through plug-in classes
+ well documented
+ written entirely in Java
+ GNU GPL licensed
+ Administration via GUI

or XML config files
- Not widely used, so

bugs might go un-
noticed for a long
time

23

Information Security Group
Prof. Dr. David Basin

Implementation

Details of the underlying Software (2)
– PAW is based on SUN's Brazil Framework
– Brazil began as an URL based interface for smartcards

● evolved into a complete HTTP
stack with a small footprint

● completely in Java
● two most important entities:

Server and Request
● Server handles Requests

with plug-in Handler classes
➔ very flexible architecture

● many Handlers are already provided
● Filters are a special case of Handlers used to modify content

24

Information Security Group
Prof. Dr. David Basin

Implementation

Plugin Design

proxy

C
lient

W
eb Server

ParanoidHandler

ParanoidFilter

ruleManager

secret

XML
rule file

Requests

static
MessageDigest

HTML Files

●grants or denies requests based on
 rules and presence of tickets
●sanitizes headers
●strips tickets off requests

●parses incoming HTML files
●adds ticket to identified URLs
●uses regExp for parsing

25

Information Security Group
Prof. Dr. David Basin

Overview

Introduction
– The Information Security Lab
– Purpose
– Basic Principle

Design & Specification
– First Approach
– Cryptographic Primitives
– Architecture
– URL rewriting
– Deficiencies

Implementation
– Existing Software
– Details of the underlying

Proxy Software
– Plugin Design

Results
– Security Considerations
– Performance
– Future Work

Q&A

26

Information Security Group
Prof. Dr. David Basin

Results

Security Considerations (1)
– mainly designed to prevent unintended malicious activity

● does not prevent a user from requesting a “dangerous” URL already
present on an external web page

● does not protect users from malicious content on requested pages
– Brute Force Attacks:

● cracking secret key allows access to arbitrary URLs.
● attacker can generate many input/output pairs for hash function
● but “good” hash functions are “secure” even if many input/output

pairs are known
● periodical changes of secret would reduce amount of known pairs

but also impact functionality

27

Information Security Group
Prof. Dr. David Basin

Results

Security Considerations (2)
– stealing the secret key:

● in principle, all handlers and filters have access to the config file
and hence, the secret key

● they could even disable the ParanoidProxy handlers by editiing the
config file

➔ only handlers and filters from trusted sources should be
installed

– reflecting URLs
● example: user enters as user

name in a login form, and the web site replies, user is not known, try again. The
URL is recognized by the proxy and tagged with a ticket.

➔ allowed parameter values should be reasoned, e.g., '<>' not
allowed

28

Information Security Group
Prof. Dr. David Basin

Performance (1)
– Web Polygraph was used for performance measurements

● allows to model lots of assumptions
● simulates HTML content (important when testing parsers etc.)

– different test cases:
● realistic model with low traffic volumes (0.6 requests/s), small files,

and mixed content
● large HTML files to measure response time increase introduced by

parsing
● best effort method

– slow-down was distinctly measurable in all test cases
● response times increased by factor 3 in first case (now ~60 msec)
● factor can go up to 20 or above for large files
● throughput reduced by factor 3.5 in best effort mode (now ~4 MBit/s)

Results

29

Information Security Group
Prof. Dr. David Basin

Performance (2)

– conclusion: performance is sufficient for use in lab, but should
be improved for use in larger environments

● implementation: code optimizations
● design: inclusion of a cache for rewritten pages

Results

response time distribution,
filter off (first test case)

response time distribution
filter on (first test case)

30

Information Security Group
Prof. Dr. David Basin

Results

Future Work
– integration of SSL support
– integration of a cache for improved performance
– more generic rule list

● currently on a per-URL-basis
● no wildcards allowed
● no IP-address based rules

– easier Administration
● rule administration currently done by editing XML files
● rule list not loaded if rule file has syntax errors
● helper application could write rule file based on inputs to a GUI

31

Information Security Group
Prof. Dr. David Basin

Overview

Introduction
– The Information Security Lab
– Purpose
– Basic Principle

Design & Specification
– First Approach
– Cryptographic Primitives
– Architecture
– URL rewriting
– Deficiencies

Implementation
– Existing Software
– Details of the underlying

Proxy Software
– Plugin Design

Results
– Security Considerations
– Performance
– Future Work

Q&A

32

Information Security Group
Prof. Dr. David Basin

Questions?

– report, software, javadoc and additional material available @
http://n.ethz.ch/~fuchsd/proxy/

– thanks for your attention!

