
AspectJ & AspectWerkz
Aspect Oriented Programming in Java

David Fuchs, Remo Egli

Aspect Oriented Programming is a powerful program-
ming methodology to modularize a program's structure.
In this article, we will �rst introduce the reader to the
bene�ts of AOP. Di�erent types of AOP are presented.
We then explain the basics of the �rst AOP implemen-
tation, AspectJ. Furthermore we will discuss another
AOP implementation, AspectWerkz, and explain how
AspectWerkz and AspectJ together are evolving into a
new AOP language, AspectJ5.

Finally, we will contrast the AOP approach of As-
pectJ/AspectWerkz with two other popular AOP solu-
tions, the Spring framework and PROSE.

Introduction to AOP

Crosscutting Concerns

A core concern of a software system is single, speci�c
function the system performs. A core concern of a �-
nancial application, for example, could be the process-
ing of �nancial transactions or the representation of a
customer. However, typical software systems also com-
prise multiple crosscutting concerns, secondary func-
tions that a�ect many of the core concerns. Typical
examples of crosscutting concerns include logging, au-
thentication, security policies, or transaction manage-
ment.

With the advent of the Object-Oriented Program-
ming (OOP) paradigm, the concept of a class changed
the way complex systems are developed. Classes al-
low to separate and encapsulate di�erent core concerns,
therefore hiding their implementation details. To view
a system as a set of collaborating objects allows pro-
grammers to modularize code according to the core
concerns.

However, crosscutting concerns often span over sev-
eral unrelated classes. Even though the core concerns
of each class may be very di�erent, code needed to
perform the secondary crosscutting concerns is often
identical. (See �gure 1.) The OOP model does not
adequately address this behavior. The nature of the
crosscutting concerns requires classes to perform tasks
other than the core concerns they implement. This has
several implications:

Figure 1: Crosscutting concerns in the OOP model.

• Code is harder to write.
A developer must think about many concerns si-
multaneously instead of being able to focus on the
main concern. Making errors is thus easier.

• Code is harder to maintain.
As the implementations of core- and crosscutting
concerns are not separated, code becomes bloated,
harder to understand and more error-prone. Also,
changed requirements of a single crosscutting con-
cern require changes and recompilation of all af-
fected classes.

• A system is harder to evolve.
Predicting future crosscutting requirements is a
very di�cult task. If unforeseen requirements
emerge, changes or even reimplementation of
many parts of the system may become necessary.
On the other hand, implementations that try to
address even low-probability future requirements
tend to become over-designed and confusing.

Most application servers and frameworks address some
crosscutting concerns in a modularized way. The En-
terprise JavaBeans architecture, for example, handles
concerns such as logging and security. The downside of
such an approach, however, is that the provided solu-
tions are speci�c to the framework, thus implementa-
tion of the core concerns becomes dependent on the
framework in use. Design patterns such as Mix-In
Classes or Visitor Pattern allow a developer to defer

1



a concern's implementation, but the actual control of
the operation (e.g., invoking a visitor) still are not sep-
arated from the core concern's implementation. AOP
provides a powerful and generic solution to separate
these concerns.

AOP fundamentals

An aspect is a separately implemented piece of code
that is executed (�woven in�) at a speci�c point in the
execution of a program. It is the basic unit of modu-
larization of an AOP language, as is the class in OOP
languages. Thus, each concern can be implemented
separately; in the previous example of a �nancial ap-
plication, a developer would write code for logging, au-
thentication and other requirements each as an own,
independent aspect. A weaver later combines the as-
pect code with other program code. This principle is
depicted in �gure 2.

More formally, an AOP language is made up of the
following elements:

Join Point: A speci�c point in a program's �ow, e.g.
the call of a speci�c method.

Pointcut: Set of join points and variable values at
these points, e.g. all calls of a given method and
the parameter values.

Advice: Code to be executed when a join point is
reached.

Aspect: Advice and a non-empty set of pointcuts.

Note that AOP and OOP are not competing para-
digms. AOP is orthogonal to OOP in that it addresses
the encapsulation of crosscutting concerns, whereas
OOP separates and encapsulates core concerns.

Types of AOP

The weaver is an important element of AOP as it com-
poses independently implemented concerns to form the
�nal system. Depending on when code weaving takes
place, di�erent types of AOP are distinguished:

Run-time AOP: Advice code is woven in during run-
time, without the need for application restarts.
This requires a modi�ed VM [1] or �proxy objects�
[2] that trace and intercept method calls, �eld ac-
cess etc.

Load-time AOP: A modi�ed class loader weaves in
advice code when classes are loaded into the VM.
Aspects can be selected at load time, and no re-
compilation is necessary when changing the selec-
tion.

Compile-time AOP: The weaver modi�es the Java
source or the Java-bytecode. A compile-time
weaver outputs �normal� Java-bytecode which will
run on any VM. The compiled code is also very ef-
�cient, as all aspects are statically compiled in the
bytecode, eliminating the indirections introduced
by proxy objects or modi�ed VMs.

AspectJ

AspectJ is an open-source, compile-time AOP imple-
mentation for Java. Developed in the mid-90s at Xerox
PARC and thus the �rst AOP language, it is now an
openly developed eclipse.org project [3] and released
under the Mozilla Public License. A development plug-
in for eclipse is also available [4].

AspectJ is an extension of the Java language, adding
to it the pointcut, advice, and aspect constructs. It
therefore needs its own compiler, ajc. Furthermore,
AspectJ includes type-modi�cation constructs that al-
low to modify the static structure of a program, i.e.,
add new �elds, methods, and supertype declarations
to classes and even interfaces. While this is a very
powerful mechanism, it must be noted that it arguably
violates the encapsulation property of OOP.

AspectJ Example

A very simple sample aspect tracing calls to any
method with name myMethod in MyClass is shown be-
low.

public aspect Logger{

// named pointcut definition

pointcut: logHere():

call( * MyClass.MyMethod(..) );

// advice for above pointcut

before: logHere(){

System.out.println("Entering "

+thisJoinPoint);

}

}

When woven into any program, the program will
print something similar to Entering call(void

MyPackage.MyClass.myMethod()) each time
myMethod is called, before method execution. This is
a good example of how AOP can be used to relieve
a programmer from the tedious task of adding debug
code to a program and eventually commenting it out
again for the release build.

2



Figure 2: AOP implementation of crosscutting concerns

Aspect structure

The structure of an AspectJ aspect resembles that
of a Java class. Within the aspect, advice code and
pointcuts are de�ned. Like Java classes, aspects can
also contain constants, �elds and methods and may be
marked as public, abstract, or final.
A wide range of pointcuts is supported by AspectJ,

including

• method call and execution

• constructor call and execution

• get and set access to a �eld

• exception handler execution

• lexical-structure based pointcuts to select join
points within the lexical scope of classes or meth-
ods

• control-�ow based pointcuts to select join points
within the control �ow of a given method

Pointcuts can also be combined using the logical op-
erators ||, &&, and !. Pointcuts can be named (as in
the example), or anonymous, in which case the point-
cut de�nition is speci�ed directly in the advice. The
joinpoints selected by a pointcut are described by the
pointcut type (e.g., get or call) and a pattern contain-
ing package, class, and method/�eld signatures. Thus,
patterns to choose a method or �eld, respectively, look
as follows.

• <return_type> <package>.<class>.<method>

(<parameter_type>)

• <field_type> <package>.<class>.<field>

The wildcards * (for return types and names) and ..

(for method parameters) may be used in a pattern. The
detailed pattern syntax can be found in the AspectJ
Programming Guide [5].
AspectJ provides various ways to associate an advice

to a pointcut:

• a before advice is executed just before the join-
point is reached, as in above example

• after returning advice is executed after the
joinpoint, if no exception occurs

• after throwing advice runs after an exception
has been thrown

• after advice is always executed after a joinpoint,
comparable to finally

• an around advice replaces the advised code. Using
proceed(), the advice can call the original code.

Pointcuts not only pick out join points, they can also
expose part of the execution context at their join
points. Values exposed by a pointcut can be used in
the body of advice declarations. An advice for some
method therefore has access to the method's parame-
ters and the object executing the method.

AspectWerkz

AspectWerkz [6] is an aspect oriented framework for
the Java language. It utilizes bytecode modi�cation
to weave classes at compile-time or load-time. Experi-
mental support for run-time weaving is also available.
AspectWerkz is based on pure Java and is not a new
language like AspectJ. AspectWerkz is free and open
source (GNU Lesser General Public License), spon-
sored by BEA Systems.

Aspects

As in AspectJ, the aspect is AspectWerkz' unit of mod-
ularity for crosscutting concerns. An aspect contains
pointcuts, advices and introductions (AspectWerkz'
analog of AspectJ's type modi�cation constructs). Any
Java class can be an aspect, no speci�c interface must
be implemented. The only constraint is that the class
has either no constructor at all or one of following two:

• A default no-argument-constructor

3



• A constructor that takes an
org.codehaus.aspectwerkz.AspectContext

instance as its only parameter

Since aspects are regular Java classes, it is possible
to reuse aspects by marking them as abstract and
inheriting from them. Pointcuts and bindings between
pointcuts and advice are con�gured using either Java
annotations within the class �le or by external XML
con�guration �les. (See �gures 3 and 4.) The two
possibilities are equivalent and can be used together.

Figure 3: Annotation style aspect

@Aspect

public class MyAspect{

//pointcut definition

@Expression(call( * MyPackage.MyClass.

myMethod(..)))

Pointcut MyPointcut;

//before advice definition

@Before(myPointcut)

public void myBeforeAdvice() {

// do some stuff

}

}

Figure 4: XML-con�gured aspect

<aspect class=MyAspect>

<pointcut name=MyPointcut

expression=call( * MyPackage.MyClass.

myMethod(..))/>

<advice name=MyBeforeAdvice

type=before

bind-to=MyPointcut/>

</aspect>

Pointcuts

A lot of joinpoint types supported by AspectWerkz.
(The list is almost identical to that of AspectJ.) The
joinpoints which should be selected by a pointcut are
described by the same joinpoint selection pattern lan-
guage as in AspectJ. Similar to AspectJ, joinpoints can
be combined using the boolean AND, OR, and NOT
operators.

In AspectWerkz, pointcuts are de�ned as �elds or in
special cases as methods in an aspect class. A method-
de�nition is required if the pointcut takes arguments.
Pointcuts can be named or anonymous.

Advices

Advice code can be executed before, after or around
(instead of) the pointcut code. It is also possible to
distinguish between a successful method call (after
returning) and an exception (after throwing). Ad-
vices are regular methods in aspect classes with a spe-
ci�c signature de�ned by the AspectWerkz speci�ca-
tion.

Introductions

The goal of introductions is adding code to existing
classes. The implementation in AspectWerkz is using
mix-in classes. The code of the mix-in class is �mixed�
into all classes which are picked out by a pointcut.
Mix-ins can simulate multiple inheritance by adding
interfaces and implementations to existing classes.

Any regular class implemented as an inner class
within an aspect can be a mix-in. The only require-
ment is that this class must consist of at least one in-
terface and an implementation of this interface.

AspectJ5

As described in the previous sections, there are a lot
of similarities between AspectJ and AspectWerkz. For
example, the supported joinpoint types and joinpoint
selection are almost identical. On the other hand, both
projects have particular strengths and use somewhat
di�erent approaches. The AspectJ language supports
e�cient compile-time weaving, while the Java-based
AspectWerkz also o�ers more �exible load-time weav-
ing and provides a simple annotation-based or XML-
based development style.

The goal of AspectJ5 is to combine the complemen-
tary strengths of the two projects to produce a single,
powerful aspect-oriented programming platform. In
January 2005, the two development teams announced
that the AspectWerkz developers will join the AspectJ
project to bring the key features of AspectWerkz to the
AspectJ platform.

AspectJ5 is thus the successor of AspectJ, enriched
with a lot of new features. The most important modi-
�cation is the integration of load-time weaving, an es-
sential part of AspectWerkz. Another useful feature is
the new annotation-based style of development which
is called @AspectJ-annotation in AspectJ5. This fea-
ture allows a programmer to write aspect de�nitions in
a simple way directly into the source code �les.

4



It is important to note that there is only one lan-
guage, one semantic and one weaver, but two di�er-
ent development styles which can be mixed in a single
project. Users familiar with the current AspectJ code
style can continue to use it in AspectJ5 projects. New
users can utilize the new, simpler annotation style.
AspectJ5 is still a fully open-source project on the

eclipse.org platform, backed by IBM and BEA Sys-
tems.

Other AOP solutions

Finally, we will compare AspectJ5 to two other promi-
nent AOP solutions: Spring AOP, and PROSE.

Spring AOP

Spring is a powerful and e�ective Java application
framework, with AOP being one among many abili-
ties. Spring uses a proxy-based approach to provide
run-time weaving; load- or compile-time weaving are
not supported. Spring AOP is based on pure Java,
and no special compiler or modi�ed VM are required.
In contrast to AspectJ5, Spring AOP can only ad-

vise method and constructor execution. Spring's goal is
not to provide a full-fetched AOP solution, but rather
a tight integration of the AOP features into the frame-
work. As the Spring website puts it, �Spring AOP will
never strive to compete with AspectJ or AspectWerkz
to provide a comprehensive AOP solution. ... [AspectJ
and Spring] are complementary, rather than in compe-
tition.� AOP advice is speci�ed using the �normal�
Bean De�nition XML �les, and the framework man-
ages advice and pointcuts, easing administration. As a
downside, aspects must implement interfaces provided
by the framework.
Version 1.1 of the Spring framework provides a closer

integration of AspectJ aspects. The framework is now
able to con�gure AspectJ aspects just like ordinary
Java classes. For future releases, the support of As-
pectJ pointcut syntax for Spring AOP is planned. Also,
the export of some Spring services (e.g., transaction
management) as AspectJ aspects for use without the
Spring framework has been announced.

PROSE

PROSE is a middleware platform for dynamic run-time
adaptation. It is an open-source project of the ETH
Zurich's Computer Science Department. The main
goal of PROSE is the ability to change an application's
code during run-time, enabling updates or bug �xes
to be deployed in a running system without restart.
In contrast, AspectJ5 (as well as Spring AOP) repre-
sents a programming paradigm addressing the issues
discussed in the �rst section of this article.

PROSE is based on pure Java, but requires a modi-
�ed Java VM to intercept calls to methods and �elds.
Currently, Sun JVM and IBM Jikes RVM are sup-
ported. A powerful ability of the PROSE platform is
atomic weaving that atomically enables all join points
of an aspect at the same time, ensuring the applica-
tion's consistency. Load- or compile-time weaving are
not available.
A wide range of join points are supported, the se-

lection of join points is done with regular expressions
and thus very �exible. Additionally, �ltering mecha-
nisms allow execution of advice code based on various
properties of the execution point.
An eclipse plug-in for easy aspect development as

well as a PROSE workbench to visualize and control
aspects in a VM are also available.

Conclusion

AspectJ, the �rst AOP implementation for Java, allows
developers to modularize crosscutting concerns. Its
key bene�ts are easier-to-write and easier-to-evolve sys-
tems and good performance. AspectWerkz strengths
are the more �exible load-time weaving support and
the annotations-based and XML-based development
styles. Other AOP solutions, such as Spring or
PROSE, have other main objectives and are therefore
not in competition to AspectJ/AspectWerkz.
Combining the excellence of both AspectJ and As-

pectWerkz, AspectJ5 could evolve into an even more
comprehensive and powerful AOP solution with an
ever-growing base of users and expertise.

References

[1] G. Alonso, T. Gross, A. Nicoară et al. Various
papers on PROSE.
http://www.iks.inf.ethz.ch/publications/

publications/aosd02.ps;
http://www.iks.inf.ethz.ch/publications/

publications/aosd03.ps;
http://www.iks.inf.ethz.ch/publications/

PROSE-ASMEA05.pdf

[2] Spring AOP. http://www.springframework.org/
docs/reference/aop.html

[3] http://eclipse.org/aspectj/

[4] http://eclipse.org/ajdt/

[5] http://www.eclipse.org/aspectj/doc/
released/progguide/index.html

[6] http://aspectwerkz.codehaus.org/

5


