
Master's Thesis

A Resilient Transport Layer
for Messaging Systems

September 12, 2007

David Fuchs
fuchsd@student.ethz.ch

Supervision:
Dr. Sean Rooney (IBM Research GmbH, Zurich Research Laboratory)

Prof. Dr. Gustavo Alonso (ETH Zurich, Institute for Pervasive Computing)

Abstract

MQTT, the Message Queue Telemetry Transport protocol developed by IBM,
is a lightweight publish/subscribe protocol for network edge devices. MQTT
typically runs over a TCP connection. While TCP provides reliable and in-
order delivery for a connection, it cannot deal with failures such as a complete
disconnect of two peers or peers failing due to hardware errors or power losses.
Usually, it is the application's task to detect and correct such problems.

This paper presents ReTCP, a general purpose, light-weight addition to
TCP-based network stacks. ReTCP provides reliable and in-order packet de-
livery for an application, even in the presence of network failures causing the
underlying TCP connection to disconnect, or application failures due to power
losses etc. ReTCP is explained and implemented in the context of MQTT TCP-
based network stack.

The implementation is tested and its performance compared to the one of
the existing stack under several scenarios.

Keywords: MQTT, messaging systems, failure resiliency, persistency layer,
TCP, ReTCP

Contents

1 Introduction 5
1.1 The MQTT Publish/Subscribe Protocol 5
1.2 Usage Example . 6
1.3 Data Exchange between Peers . 7
1.4 Goals of ReTCP . 10

2 Design 12
2.1 MQTT Protocol Overview . 12

2.1.1 Header Format . 12
2.1.2 Connection Establishment 13
2.1.3 Subscribing to and Unsubscribing from Topics 16
2.1.4 Publishing Messages . 16
2.1.5 Pings and Pongs . 17
2.1.6 Disconnection . 17

2.2 ReTCP from a Bird's Eyes View 17
2.2.1 Assumptions . 17
2.2.2 Expected Behavior . 18

2.3 Design of the ReTCP Protocol 19
2.3.1 Persisted Connection Data 21
2.3.2 Connection Setup and Termination 22
2.3.3 Data Flow . 25
2.3.4 RTO Calculation . 31

3 Implementation 36
3.1 The MQTT Communication Stack 36

3.1.1 Stack Architecture . 36
3.1.2 Anatomy of a Module . 38
3.1.3 Stack Instantiation . 38
3.1.4 Stack Termination . 39

3.2 The ReTCP Network Stack for MQTT 40
3.2.1 Module Design . 40
3.2.2 Persistent Data Store . 42
3.2.3 Instantiation of the ReTCP Stacks 43

4 Testing the Implementation 46
4.1 Unit and Integration Tests . 46
4.2 Performance Tests . 47

4.2.1 Test Environment . 47

2

CONTENTS 3

4.2.2 Processing Overhead . 49
4.2.3 Throughput . 54
4.2.4 Message Delivery Latency 55

5 Conclusion and Future Work 58
5.0.5 Future Work . 58
5.0.6 Conclusions and Retrospection 59

A RTO Calculation 60
A.1 TCP RTO Calculation . 60
A.2 ReTCP RTO Calculation . 60

List of Figures

1.1 MQTT QoS 0 mode . 8
1.2 MQTT QoS 1 mode . 8
1.3 MQTT QoS 2 mode . 8

2.1 MQTT message format . 12
2.2 ReTCP-based network stack . 20
2.3 ReTCP Header Design . 20
2.4 ReTCP Connect Packet . 24
2.5 MQTT connection establishment over ReTCP stack 24
2.6 Sliding Window Protocol . 26
2.7 ReTCP RTO Calculation . 32
2.8 Simulated RTO convergence towards constant MSS RTT 34
2.9 Simulated RTO calculation for steady changes of RTT 34
2.10 Simulated RTO calculation for sudden change in RTT 34

3.1 MQTT communication stack . 37
3.2 ReTCP stack module . 42
3.3 ReTCP state table . 44

4.1 Round-trip times (ms) for packet sizes between 1 byte and 16 MB 50
4.2 Round-trip times (ms) for packet sizes up to 10 kB 50
4.3 Processing Times, Sender . 51
4.4 Processing Times, Receiver . 52
4.5 Convergence to constant RTT . 53
4.6 Slow RTT increase from 2 to 3 seconds 53
4.7 Abrupt RTT change from 2 to 3 seconds 53
4.8 Throughput, Ethernet . 54
4.9 Throughput, Wi�-5 . 54
4.10 Throughput, Wi�-10 . 55
4.11 Delivery latency (ms), Ethernet 56
4.12 Delivery latency (ms), Wi�-5 . 56
4.13 Delivery latency (ms), Wi�-10 . 57

4

Chapter 1

Introduction

In this �rst chapter, a short introduction of MQTT is presented, and the motiva-
tion and goals of ReTCP are explained. The rest of the paper is then structured
as follows:

Chapter 2 explains the MQTT protocol in more detail, and then de�nes the
design of ReTCP and the expected advantages of using a ReTCP stack.

Chapter 3 describes the architecture of the MQTT networking stack, and
how ReTCP is implemented within this architecture.

Chapter 4 shows the results of the unit-, integration-, and performance-tests
that were executed.

Chapter 5 concludes the paper with a short retrospection and lists some
ideas for future work.

1.1 The MQTT Publish/Subscribe Protocol
The availability of real-time data from many distributed sources is an important
and ever-growing requirement of many enterprise computer networks. Typical
examples include data from sensors, such as RFID-readers in supply-chain man-
agement or measurements of monitoring systems. Traditional SCADA1 systems
typically use polling to gather data, often based on vendor-speci�c, proprietary
data transport protocols. In a SCADA system, �master stations� are responsible
for gathering the data by polling data sources, processing the data, storing it in
�les or databases, and further distributing it. Especially in large and heteroge-
neous SCADA systems, the correct acquisition and distribution of data across
di�erent transport protocols and host systems poses a di�cult problem. Its
solution often requires expensive custom applications and is di�cult to adapt
to changing requirements.

To be able to make more e�cient use of such data, close integration of
the data sources into the enterprise network is required. The data sources are
typically small devices with limited battery power, processing power or available
memory and storage. Examples include hand-held devices such as scanners
in a warehouse, temperature sensors in a cooling chain, �ow meters in oil or
gas pipelines, power meters reporting current consumption, weather sensors in
remote weather stations, and many more.

1Supervisory Control And Data Acquisition

5

6 CHAPTER 1. INTRODUCTION

The data �ow generated by such data sources di�ers from that of traditional
client-server-applications with a powerful central server sending data to clients.
Instead, many distributed data sources send data to a few central servers, where
it is gathered, analyzed, and acted upon. Often timeliness of message delivery
is also an important requirement, as information is expected to be available in
real-time, i.e., within a milliseconds-range. Information from the same source
can be relevant to several processing applications; it is thus desirable to have a
scalable, generic messaging architecture providing an e�cient and simple means
to direct data �ow from the source to interested parties.

The MQTT architecture [MQTT] provides such a system. MQTT is based
on a Publish/Subscribe mechanism: rather than sending information directly to
each interested party, data sources label each message with a Topic and send
it to a Broker, which is then responsible for its further distribution. Systems
interested in that particular topic can subscribe with the broker, and the broker
will then forward all information on selected topics to all interested subscribers.
This loosely coupled architecture is less complex and more scalable than point-
to-point communication, since data sources need not be concerned with the
correct distribution of each message. A data source does not need to know who
the �nal recipients of it's messages will be, or even about their existence. This
facilitates the deployment of an MQTT-based system in an unmanaged environ-
ment, e.g., a warehouse. In such an environment, device failures are expected,
and deploying or replacing devices should require as little con�guration e�ort
as possible. Nodes can dynamically join and leave the system without requiring
extensive re-con�guration of the whole system. Also, each message only needs to
be sent once by each data source, greatly reducing power consumption of small
nodes with limited battery power. The existence of a broker also eliminates the
need for complex routing and discovery algorithms executed at the edge devices
to discover other devices and route messages to them. All a device needs to
know is how to contact the broker. Note that this does not limit the topology
of an MQTT system to a simple star, as a broker can act as the subscriber of
another (called �bridging�).

MQTT was designed to be as light-weight, simple and e�cient as possible.
While other messaging systems o�er similar bene�ts in terms of reliability, they
tend to be more comprehensive, but also more computationally intensive for the
peers. The WebSphere MQ system [MQ], for example, provides a feature-rich,
robust and reliable messaging platform running on a multitude of architectures.
While MQ provides many features MQTT doesn't, such as data transformation
between di�erent formats, clustering and load balancing for better performance,
message prioritization and many more, MQ requires substantially more powerful
hardware and was not designed for low latency and ease of con�guration.

1.2 Usage Example
This short chapter shall serve to illustrate the typical usage of MQTT on small,
mobile devices in terms of a real-world example.

British car insurance company �Norwich Union� o�ers their customers the
possibility of paying premiums based on their �real� usage of their cars rather
than statistical models[norw]. Normally, the expected risk - and thus the pre-
mium - of a driver are calculated using statistical data pertinent to the driver's

1.3. DATA EXCHANGE BETWEEN PEERS 7

sex, age, ethnic group, address and the like. With the o�ered new calculation
model, drivers pay premiums based on their actual usage of the car; i.e., how
often, where, and when they use the insured car.

To that end, the insurer installs a �black box� into the insuree's car. With the
help of a GPS receiver, the box registers the car's usage pattern. Periodically,
the gathered data is transmitted over a TCP/IP GPRS connection to the in-
surer, using the MQTT protocol. Using MQTT allows the insurer to use cheap,
small and light hardware and makes it easy to integrate the incoming data �ow
into the enterprise network. Moreover, MQTT adds only a small overhead to
the data transmitted over the slow and expensive GPRS connection.

1.3 Data Exchange between Peers
MQTT is usually run over a TCP connection. The connection is always initiated
by the client, the broker never actively opens a connection to a client. TCP is
designed to be �reliable� [RFC793]: It ensures that packets lost in the network
are re-sent as well as in-order delivery of packets to the application. However,
TCP cannot prevent packet loss in the sending or receiving application. If
an application or even the sending or receiving host completely crash, unsent
packets as well as packets received but not yet delivered to the application will
get lost. Also, intermittent loss of connectivity can cause the TCP connection
to break and interrupt the data �ow on the connection, requiring opening a
new connection and causing loss of unsent data in TCP's bu�ers. This kind of
network problem is prevalent especially in wireless networks.

These problems are currently addressed at the application level by MQTT.
More speci�cally, di�erent levels of resiliency are achieved by di�erent opera-
tional modes speci�ed by the MQTT protocol (version 3, [MQTT-spec]), called
QoS levels. Under some circumstances, loss or multiple delivery of a message
might be tolerable. A weather station, for example, might sample the current
temperature at speci�c intervals; since the loss of some of those measurements
most likely won't signi�cantly degrade the calculated average temperature or
other derivatives, it might be perfectly acceptable. An RFID reader detecting
which goods leave a warehouse, on the other hand, must reliably deliver each
message once and only once; otherwise, missing or duplicate messages might
corrupt the entire inventory. The administrator of the application chooses the
QoS level of a node's messages according to the importance of their data and
bandwidth and energy consumption constraints. Note that the QoS level is
speci�c to a single message rather than an entire connection.

QoS 0 This message exchange quality level o�ers at-most-once or �best e�ort�
semantic. The communication consists of a single Publish message sent
from the client to the broker. Neither sender nor receiver have a way of
detecting the loss of messages.

QoS 1. The reception of a QoS 1 Publish message is acknowledged by a Pub-
ack message. To identify messages, each message contains a Message-ID
header �eld (which is speci�c to a connection between a sender and a re-
ceiver, not to the message itself). If after some timeout no Puback has
been received by the sender, the message is re-sent. This scheme o�ers
at-least-once semantic: It is guaranteed that the receiving application will

8 CHAPTER 1. INTRODUCTION

Figure 1.1: MQTT QoS 0 mode

Figure 1.2: MQTT QoS 1 mode

get a message, but the message might also be delivered several times (e.g.
due to lost Pubacks). Until the receiver's acknowledgment is received,
the sender stores the message persistently on disk.

QoS 2. This is the highest available service level; it guarantees an exactly-
once semantic. This protocol �ow is used when the delivery of duplicates
is not acceptable. In this scenario, the recipient �rst receives a Pub-
lish message, stores the message persistently, and sends back a Pubrec
(Publish Received). When the client receives the Pubrec, it knows that
the broker now has a copy of the message, and can thus delete its own
copy. This way, a situation where a client stores a message inde�nitely
although it has already been published by the broker is averted. Upon
receiving the Pubrec, the client then sends a second message, a Pubrel
(Publish Release). The recipient con�rms the Pubrel with a Pubcomp
message (Publish Completed). Only after this 2-phase message exchange
is completed, the message is processed by the recipient.

The three possible QoS operation modes of the protocol are illustrated in

Figure 1.3: MQTT QoS 2 mode

1.3. DATA EXCHANGE BETWEEN PEERS 9

�gures 1.1 to 1.3.
It is possible for an administrator to restrict the QoS levels available to a

client; a message sent by the publisher with a higher QoS level than available
to a subscriber will be re-sent to the subscriber with the highest available QoS
to that subscriber.

As can be seen, the additional reliability of higher QoS levels comes at a
price:

• It adds additional processing logic to the broker and client applications:

∗ Messages need to be stored by the sender until an Ack or Pubrec
is received (QoS 1 and 2, respectively);

∗ Timers need to be maintained for unacknowledged messages, to de-
tect loss and re-send if necessary

• Higher QoS levels adds additional consumption of bandwidth and trans-
mitting power. The QoS 2 protocol, for instance, uses 3 control messages
(Pubrec, Pubrel, Pubcomp) in addition to each transmitted message
containing application data.
While the control messages are only a few bytes in length and thus do
not consume large amounts of bandwidth by themselves, the additional
power needed for transmission must not be underestimated. Especially in
small sensors using wireless communication, the current consumed by the
radio can be many times that consumed by the processor. (Compare, e.g.,
[SHB+04].) It must be noted that a single sent MQTT message triggers
the sending of many other packets: RTS/CTS frames, MAC layer ACKs,
and TCP ACKs. In [Per05] it has been shown that even for a simple setup
with only one broker, one publisher and one subscriber and a channel error
probability of 10%, the amount of bytes exchanged at the MAC layer will
more than double for the QoS 2 mode as compared to QoS 0 (sending rate
25 messages per second, message size 200 Bytes).

• Latency is increased. Compared to QoS 0, the latency of a QoS 2 message
is increased by at least 1.5 RTTs. This is a problem especially on networks
with high latency; GPRS, for instance, has a link round-trip latency of up
to 4 seconds [RAI99]. On wireless networks, where data loss often occurs
in bursts, the increased number of exchanged messages also increases the
risk of such a burst occurring during the message exchange, requiring TCP
to re-transmit packets and thus further increasing latency. Moreover, if
several peers are in sending range of each other, the additional messages
increase the probability of contentions and collisions, adding even more to
the latency (and also power consumption). In [Per05], chapter 5.3.4, this
sensitivity of wireless networks towards additional messages is examined
in detail.

• For QoS 1 and QoS 2 messages, available bandwidth might be under-
utilized because at any one time, only 1 message can be in-�ight. The rea-
son for this limitation is that the MQTT protocol only mandates di�erent
message ID numbers for any two di�erent messages, but does not impose
any other constraints, such as that message IDs be strictly monotonously
increasing. In that, MQTT's message ID fundamentally di�ers from TCP's

10 CHAPTER 1. INTRODUCTION

sequence number, and cannot be used to assure in-order delivery to the
application. A thread reading incoming messages from the network would
need to bu�er the messages in the order they are received (TCP does guar-
antee that this order does not change on the connection) while the message
exchange is completed; this is not currently implemented. The current im-
plementation performs the delivery protocol sequentially for each QoS 1
or 2 message. This renders message ID numbers virtually useless for the
MQTT network stack (they are, however, used internally by the MQTT
application).

The goal of this dissertation is the design and implementation of a solution that
alleviates these problems. The design goals are described in the next chapter.

1.4 Goals of ReTCP
The goal of this thesis is to implement a new approach to transmitting mes-
sages in a manner resilient to application failures as well as network failures.
Resiliency will be added to a connection by lower-level messaging stack mod-
ules rather than by the application itself. This frees application developers from
concerning themselves with all the tedious details of reliable message delivery.
The application will be able to use the simple QoS 0 protocol and still bene�t
from an exactly-once semantic, if needed. Depending on the requirements, an
administrator can choose to use the new ReTCP stack and get QoS 2 semantics,
or use the existing network stack for QoS 0 semantics.

The design goals of ReTCP are summarized below.

• ReTCP provides the same level of reliability as the current QoS 2 protocol
version; i.e., exactly-once semantic.

• The number of exchanged messages should be smaller than with the cur-
rent QoS 2 protocol version. As explained above, this will reduce the
bandwidth consumption as well as the latency.

• ReTCP allows multiple in-�ight messages for increased bandwidth e�-
ciency.

• ReTCP is resilient against network failures and application failures: Even
when peers crash, no messages must be lost.

• Flow control: Messages should not be sent to a receiver at a rate faster
than it can process the messages, thus �lling up its queue of unprocessed
messages and possibly causing it to run out of memory.

To this end, data bu�ers on persistent storage will be used on both the send-
ing and the receiving end of a connection, similar to the bu�ers used by TCP
connections.

Some issues arising with the possibility of failures are not addressed by the
proposed solution. In particular, the following problems are not addressed:

• Not processing the same message twice when recovering from an applica-
tion failure remains the application's responsibility. This task is generally

1.4. GOALS OF RETCP 11

not easily solved and highly depends on the application at hand.
If the application for instance writes received messages to a database, re-
covery from a failure is relatively simple and consists of simply checking
for the relevant entry in the database. However, if the processing involves
e.g. communication with other peers, restoring the exact state before the
failure is generally impossible without querying other involved peers. This
task cannot be done by the network stack, as it involves many speci�cs of
the application.

• Messages won't be delivered atomically, i.e., the fact that any subscriber
of a topic has received a message published for that topic does not imply
that all subscribers of that topic have received it. Such an atomic delivery
mechanism that is resilient against site and network failures would require
execution of a more complex commit protocol for each message. A for-
mal protocol description of such an atomic, non-blocking commit protocol
(�three-phase commit�) was �rst presented in [SS83].
However, since the MQTT system is designed to be highly dynamic (clients
can connect or disconnect from a broker at any time), such behavior would
actually be undesired in this context. In fact, a badly behaved peer or even
a peer with a unreliable wireless connection would stop other peers from
receiving messages in such a setup.

Some features provided by the current design of MQTT QoS levels 1 and 2 will
not be provided by ReTCP:

• QoS 1, at-least-once delivery, will no longer be provided. It does not o�er
any advantages over QoS 2 from an application point of view and requires
the same amount of exchanged messages.

• The QoS level will be speci�c to a connection, not to single messages. An
application chooses to use either the existing stack (providing QoS 0), or
the new stack (QoS 2) for a connection.

The design of ReTCP is described in the next chapter. An overview of how the
implementation was added to the existing MQTT communication stack is then
given in chapter 3.

Chapter 2

Design

In this chapter, the MQTT protocol, version 3, shall brie�y be explained. For
the exact speci�cation, please refer to [MQTT-spec]. Then, the ReTCP design
will be illustrated, and the behavior of the MQTT protocol running on a ReTCP
stack will be examined.

2.1 MQTT Protocol Overview
2.1.1 Header Format
The generic format of any MQTT message is depicted in �gure 2.1.

Fixed Header The MQTT protocol was designed to add as few communi-
cation overhead as possible. In its simplest form, the MQTT header is just
two bytes in size, as shown in �gure 2.1. This �xed header is always part of
an MQTT message. Depending on the message type, the message will also
additionally contain variable header data or a payload.

Message Type The message type is an identi�er for the MQTT command to
be executed, and is one of the possible types speci�ed in table 2.1.

Figure 2.1: MQTT message format

12

2.1. MQTT PROTOCOL OVERVIEW 13

Dup Flag By setting this �ag, the sender indicates that the message is a re-
transmission. The �ag is only used for QoS levels 1 and 2, since neither
sender nor receiver can detect lost messages in QoS 0.

QoS Level The QoS level of the message, as described in section 1.3.

Retain Flag A broker can retain a message published to a topic, and imme-
diately send it to new subscribers of that topic. This can be useful when
new subscribers need to perform some initialization tasks based on a pre-
viously published message, and do not want to wait for a new publication.
By setting this �ag, a client informs the broker that a message should be
retained (replacing any previously retained message).

Remaining Length The number of bytes remaining in the current message,
including the length of the variable header data and the payload. For
lengths greater than 127 bytes, several bytes are used to encode the length,
whereby 7 bits of each byte are used to encode the length, and the 8th bit
is used as a �continuation bit�. At most 4 length bytes are allowed, thus
allowing for a maximal message size of 228 − 1 bytes (256 MB).

Variable Header Depending on the message type, the variable header con-
tains additional information required for the execution of the command at hand.
The variable header data for the di�erent message types is described in more
detail in chapters 2.1.2 to 2.1.6.

Messages sent with a QoS of 1 or 2 always include a message ID �eld. This
2-byte identi�er is used to uniquely identify a message in the communication
�ow. It is inevitable to use such an identi�er for the higher QoS levels, since the
recipient of a Pubrel, Pubcomp, or any type of Ack message must know to
which original message the received message corresponds to. Message IDs in any
communication usually start with 1 and are increased by 1 for each subsequent
message. In contrast to TCP sequence numbers, however, this continuous use
of IDs is not required by the MQTT protocol speci�cation. This shortcoming in
the speci�cation that can lead to under-utilization of the available bandwidth,
as described in 1.3.

An ID of 0 is de�ned as invalid; the message ID size of 2 bytes thus allows
for a maximum number of 216 − 1 = 65535 coexistent messages in any MQTT
session. After a message has been Pubacked or Pubcomped (QoS 1 and 2,
respectively), it can be deleted and the ID can be reused.

2.1.2 Connection Establishment
As stated earlier, a broker will never connect to a client on it's own; a client
willing to join an MQTT system is responsible for connecting to the broker. To
this end, the client �rst opens a TCP connection to the broker, and then starts
an MQTT session by sending a Connect message.

In addition to the �xed header, this Connectmessage also contains variable
header data:

14 CHAPTER 2. DESIGN

Name Value Description Remarks
Connect 1 Connection request from client to broker
Connack 2 Connection acknowledgement
Publish 3 Message publication
Puback 4 Publication acknowledgement QoS 1 only
Pubrec 5 Publication receive acknowledgement QoS 2 only
Pubrel 6 Publication release QoS 2 only
Pubcomp 7 Publication completed QoS 2 only
Subscribe 8 Client subscription request
Suback 9 Subscription acknowledgement
Unsubscribe 10 Client unsubscription request
Unsuback 11 Unsubscription acknowledgement
Pingreq 12 Ping message
Pingresp 13 Pong message
Disconnect 14 Disconnection request

Table 2.1: MQTT Protocol message types

Protocol Name (10 bytes) UTF-encoded1 name of the protocol; �xed to �MQIsdp�
in MQTT version 3 (for MQSeries Integrator SCADA Device Protocol).

Protocol Version Number (1 byte) �3� for version 3.

Connect Flags (1 byte) Connection options, as described in table 2.2. The
�ag's meanings are de�ned as follows:

Clean Start When set, this �ag signals to the broker that the client
wants to return to a known, �clean� state; any outstanding messages
for the client will be deleted, the message id reset to 1, and the client's
subscriptions will be reset.

Will Flag By setting this �ag, a client can tell the broker to publish a
message in its name in case the broker fails to communicate with
the client. When no data from the client arrives within the maximal
allowed idle time de�ned by the keep-alive timer �eld (see below),
or an I/O error occurs during communication, the broker assumes
the client �died� and will publish the will message on it's behalf; a
Disconnect from the client does not trigger the sending of the will
message.

Will QoS The Quality of Service level the broker should use when pub-
lishing the will message.

Will Retain Tells the broker whether or not to retain the will message
after it has been published.

Keep Alive Timer (2 bytes) A time period, measured in seconds, that spec-
i�es the maximal amount of time between any two messages the client is

1By �UTF-encoded�, the MQTT speci�cation refers to a modi�ed UTF-8 encoding scheme
also used in Java. See http://java.sun.com/javase/6/docs/api/java/io/DataInput.html
#modi�ed-utf-8. The UTF encoding includes the string length, therefore no message length
�eld or delimiter character need to be de�ned.

2.1. MQTT PROTOCOL OVERVIEW 15

bit 7 6 5 4 3 2 1 0
�ag unused Will retain Will QoS Will Clean start unused

Table 2.2: Connect Flags

allowed to let pass. It is the client's responsibility to send a message in
each interval. This allows the broker to detect a dropped network connec-
tion. In the absence of application data, the underlying TCP connection
will not detect this failure2. When there are no application data to be
sent, the client must send a Pingreq message.
If no data from a client is received within 1.5 times the speci�ed keep-alive
timer interval, the client will be regarded as disconnected by the broker.
In case the client had set the will �ag on connect, the broker will then
publish the client's will message. The client's subscriptions won't be af-
fected by the timeout.
The client can disable this timeout mechanism by setting the timer value
to 0.

After this 14-byte variable header, the MQTT speci�cation mandates the fol-
lowing data in the message payload3:

Client ID For the broker to be able to maintain a list of subscriptions for
each client across many Connects and Disconnects, it must be able
to uniquely identify a client when it opens a connection. Therefore, each
client has to specify an ID, which has to be unique among all clients
connecting to the same broker. If a client with the same ID is already
connected, it will be disconnected.
The client ID is UTF-encoded, and must be between 1 and 23 characters
in length.

Will Topic (If the will �ag is set) When the will message is published, it is
published to this topic. UTF-encoded string of variable length.

Will Message (If the will �ag is set) The will message that is published. UTF-
encoded string of variable length.

Upon reception of the client's Connect message, the broker should transmit
a Connack message. The Connack contains a single additional byte as it's
variable header, which indicates the success of the connection attempt. A value
of 0 means the connection setup completed successfully, the client is now con-
nected and the MQTT session set up. Values 1 to 3 signify a rejected connection
attempt due to an illegal protocol version, an illegal client identi�er, or an un-
known error on the broker side, respectively.

If the connection attempt fails or times out after some client-speci�ed time-
out period, the client will close the TCP connection to the broker and retry the
whole connection procedure.

2Unless TCP's �keep-alive� feature is used. See [RFC1122], section 4.2.3.6.
3The MQTT protocol speci�cation explicitly refers to this data as the Connects payload,

which is somewhat counterintuitive since this data is intimately related to the connection
establishment process and not actual application data.

16 CHAPTER 2. DESIGN

2.1.3 Subscribing to and Unsubscribing from Topics
Once a client is has successfully established an MQTT session with a broker, it
can register it's interest in a particular topic by subscribing to it. It does so by
sending a Subscribe request to the broker. Subscription requests are always
sent with QoS 1; hence, the QoS bits in the �xed header are set to 1. Also, the
variable header contains a 2-byte message identi�er, which will be contained in
the Suback message to let the client know which message is being Acked.

The remaining bytes of the message are the payload, comprising pairs of
UTF-encoded topic names followed by a byte indicating the desired QoS for the
reception of messages posted to that topic.

MQTT's topic space is organized hierarchically, so that clients can vary the
degree of particularity of the messages they will get. A topic name is an arbitrary
string, however, the characters '/', '#', and '+' have special meanings. Consider
the following example: A broker is collecting weather data (temperature, hu-
midity) from weather stations all over Switzerland. The topic space is organized
as �weather information�/<region>/<data-topic>, where <data-topic> is one
of �temperature� or �humidity�.

• A client interested in the current temperature in Zurich will subscribe to
�weather information/Zurich/temperature�.

• The '+' wildcard is used to match a single level of the hierarchy space. To
get temperature information for all regions, a client subscribes to �weather
information/+/temperature�.

• The '#' wildcard matches a whole subtree of the hierarchy space. To get
all available information for all regions, a client subscribes to �weather
information/#�.

Pre-con�guring the broker's topic space is not necessary; when a client sub-
scribes or publishes to a topic that does not exist in the broker's topic space, it
will be created. The broker does not impose any limit on the number of topics
or the depth of the topic space, either. The only limitation on topics is that
a topic name must not be longer than 64kB, and must consist of single-byte
characters only.

Unsubscription works similar to subscription. To unsubscribe from a set of
topics it has previously subscribed to, a client sends an Unsubscribe request
containing a list of topics. The broker acknowledges the unsubscription with an
Unsuback message.

2.1.4 Publishing Messages
When connected to a broker, a client can publish messages. A message is always
published to a topic, while the precision of the chosen topic can be varied by
the use of wildcards, as described above. The topic name is part of the variable
header, along with a message ID for QoS 1 and 2 messages.The broker will
then publish the message to all clients subscribed to that topic. The payload is
entirely application-speci�c. A client does not need to be subscribed to a topic
to be allowed to post messages to this topic.

The actual publication process varies depending on the chosen Quality of
Service level, and has already been described in 1.3.

2.2. RETCP FROM A BIRD'S EYES VIEW 17

2.1.5 Pings and Pongs
MQTT peers can check other peers by using a ping-pong style query mecha-
nism. A connected peer sends a Pingreq (Ping request) to another peer, which
the other peer answers with a Pingresp (Ping response). If no Pingresp is
received, the other peer is considered dead. Pingreq and pingresp packets
consist only of a �xed header with the according message type value.

As stated before, when specifying a Keep-Alive interval on connect, a client is
responsible for sending a packet within each keep-alive period. If no application
data is available, it must send a Pingreq.

2.1.6 Disconnection
A client disconnects from the broker by sending a Disconnect message, which
only contains of a �xed header of the according message type. The broker does
not acknowledge the Disconnect.

Any current subscriptions of the disconnecting client are not a�ected by the
disconnection. Also, messages sent with a QoS greater than 0 and with the
Retain �ag set, will be stored and delivered to the client when it reconnects.

2.2 ReTCP from a Bird's Eyes View
Before diving into the design details of ReTCP, the design goals and their ex-
pected bene�ts are shortly restated here. Since ReTCP is implemented in the
context of the MQTT network stack, the behavior in an MQTT system is of
primary interest; note, however, that other applications can use ReTCP as well.

This section also lists the assumptions on which the design is based.

2.2.1 Assumptions
Network The design of ReTCP assumes ReTCP is run over a TCP connec-
tion. It explicitly relies on some of TCP's features:

• Error detection and correction.
It is assumed that TCP detects and handles errors introduced at lower
network layers, such as loss or �ipping of bits.

• In-order �ow of bytes.
As will be explained later, ReTCP o�ers a packet-oriented connection;
the application writes data in the form of packets to the ReTCP layer. In
contrast, TCP is stream-oriented; it regards application data simply as a
stream of bytes. While ReTCP uses sequence numbers to keep packets in
order, it relies on TCP to do so for the byte order within a packet.

• Flow Control.
TCP uses sophisticated algorithms to adapt its sending speed to the cur-
rent state of the network and the receiving application. Most notably,
it implements congestion-control and -avoidance algorithms to react to
packet loss due to congestion while using available bandwidth most ef-
�ciently, and receiver-controlled �ow control in the form of advertised
window sizes, to stop a fast sender from overwhelming a slow receiver.

18 CHAPTER 2. DESIGN

msgs bytes sent round trips
Existing Stack, QoS 0 1 n + 2 1/2
Existing Stack, QoS 1 2 n + 4, 4 1/2
Existing Stack, QoS 2 4 n + 4, 4, 4, 4 3/2
ReTCP Stack, QoS 0 2 n + 5, 3 1/2

Table 2.3: Comparison of QoS 0 over ReTCP vs. higher QoS levels over TCP,
for message with n application bytes. Reading example: A QoS 2 message of
n bytes causes 4 messages to be sent. The �rst message is n bytes in size plus
additional 4 bytes for the MQTT QoS 2 header. Each additional message is 4
bytes in size. The delivery latency is 3/2 round trip times.

These algorithms come in many di�erent �avors and have been �ne-tuned
in many years. Rather than re-inventing the wheel, ReTCP tries to make
optimal use of TCP's �ow control.

Application Failures It is assumed that the program execution at either
communication peer can be interrupted or stopped due to a power loss, hardware
failure, user interrupt or similar condition. We have to assume that such an
interrupt can happen at any time in the program �ow, i.e., we cannot guarantee
the atomic execution of any piece of code.

However, we assume that byzantine failures as de�ned in [LSP82] do not
occur. As long as a peer is sending data to other peers or writing data to its
disk, this data is assumed to be correct and consistent.

2.2.2 Expected Behavior
To summarize 1.4, ReTCP is designed to:

• Provide the same level of resiliency towards network failures as the current
MQTT QoS 2 protocol mode;

• Be robust against application failures as described above;

• Reduce the number of exchanged messages;

• Decrease the latency for message delivery;

• Reduce the overhead of protocol header bytes vs. application bytes;

• Increase throughput by improving parallelization.

The interesting performance indicators will be throughput, protocol overhead,
and latency. A simple analysis of the operation and header formats of ReTCP
according to the next section allows an estimate of the behavior of ReTCP. The
number of total bytes sent, messages exchanged, and required round-trip times
until the message is available to the receiving application are summarized in
table 2.3.

Interestingly, as the comparison shows, we can expect a QoS 0 message �ow
over ReTCP to perform almost identically to a QoS 1 �ow over TCP; the number
of exchanged messages, the protocol overhead in bytes, and the latency are

2.3. DESIGN OF THE RETCP PROTOCOL 19

identical! Merely the distribution of the protocol overhead is slightly di�erent,
because the MQTT Ack uses a 4 byte header, while ReTCP only adds 3 bytes.

Compared to the QoS 2 MQTT mode, we see a dramatic decrease in latency.
This will be especially welcome in applications where timeliness is key. Also,
the overhead in bytes is halved, and only 2 instead of 4 messages are exchanged.
On busy wireless networks, this seemingly small di�erence can bring a large
performance boost, since fewer and shorter messages reduce collision probability
and therefore can reduce the amount of sent bytes at the MAC layer to a much
greater degree. This is especially true for a publisher that sends small messages
at a large rate, possibly only a single reading of an integer value. Even on
networks with a small collision risk, sending fewer messages means less energy
consumption and longer battery life.

The e�ects of using ReTCP on throughput are somewhat more di�cult to
estimate. Fewer exchanged messages and the parallelization of the connection
increase the throughput, while the added processing time of ReTCP could have
a detrimental e�ect. The actual performance gain in terms of throughput will
largely depend on message size and exchange rate and the e�ciency of the
implementation, and can only be assessed by a test setup using the actual im-
plementation.

2.3 Design of the ReTCP Protocol
Developed over 40 years ago, the TCP protocol today is more widely used than
ever, and has proven its �exibility and reliability over and over again. While
adding some features to TCP, as discussed in section 1.4, the design of ReTCP is
similar to TCP and incorporates some of TCP's proven mechanisms to reach it's
goal of being resilient towards network and application failures. In particular,
the following elements are used in ReTCP's design:

• Reliable Delivery.
All received application data is acknowledged to the sender. Only when
a packet has been acknowledged by the receiver, the sender will delete it
from its sending bu�er.

• In-Order Delivery.
While TCP ensures in-order delivery for packets received over the same
TCP connection, it cannot do so for packets received over several con-
nections. To ensure in-order delivery for packets received over the same
ReTCP-connection, a 32-bit sequence number is used on the ReTCP-layer
as well.

• Sliding Window Protocol.
Like TCP, both peers use a sliding window to keep track of sent and
received packets, so that multiple packets can be in-�ight at any time.
In contrast to a TCP bu�er, however, this send and receive bu�ers are
persistent; whenever a packet is added to or deleted from them, the bu�er
contents are immediately written to disk so that they survive even machine
crashes.
The peers can also advertise a window size, to limit the size that the
receive bu�er needs in memory and on disk.

20 CHAPTER 2. DESIGN

Figure 2.2: ReTCP-based network stack

Figure 2.3: ReTCP Header Design

The interaction between the TCP-layer, the ReTCP-layer, and the application
is shown in �gure 2.2. Like every network layer, ReTCP encapsulates packets
received from higher layers in it's own headers. The header format is shown
in �gure 2.3 (note that the �gure displays one half-word per line, not one byte
like the MQTT header illustration). Like the MQTT header, the ReTCP is
designed to be small, so as to add as few overhead to the communication as
possible. Again, the header comprises a �xed header and a variable header.

Fixed Header The �xed ReTCP header contains only a single �eld: A byte
containing �ags. The connection �ags have the following meaning:

Ack The ReTCP packet contains an Acknowledgment. Usually, this means
that an application data packet in the packet �ow is being acknowledged;
however, this �ag is also used to acknowledge connection and disconnec-
tion.

Data If set, indicates that the packet contains application data.

Conn By setting this �ag, the sender indicates it wants to set up a ReTCP
session.

2.3. DESIGN OF THE RETCP PROTOCOL 21

Disconn By setting this �ag, the sender indicates it wants to terminate a
ReTCP session.

Reconn When a previous ReTCP session was uncleanly disconnected due to
a network or application failure, the state at the time of failure will be
restored on reconnect when this �ag is set.

Rset When the previous state cannot be restored, the reconnection attempt
will be terminated by setting this �ag.

The �ags and their usage are explained in more detail in the following sections
2.3.2 and 2.3.3.

Variable Header The variable header contains data relevant for connection
setup and the synchronization of the states of both peers. Its content varies
depending on the message type, and will be explained in detail in sections 2.3.2
and 2.3.3. Except for the packets required for connection setup, it can contain
only two additional �elds:

Sequence Number (2 bytes) The sequence number is present in packets that
contain application data (i.e., have the Data bit set). It is used to identify
duplicate or missing packets in the stream of incoming packets, just as the
TCP sequence number. The TCP sequence number cannot be used to
that purpose, since it will not be continuous for packets belonging to the
same ReTCP connection but sent over di�erent TCP connections (and
also because upper network layers should not rely on such internals of
the lower levels; in fact, the TCP sequence number will usually not even
correspond to a single ReTCP packet!).

Ack Number (2 bytes) Packets with the Ack bit set will include this header
�eld. The value of the �eld is a cumulative acknowledgment, letting the
sender know that the receiver has received all packets up to the one with
this sequence number.

2.3.1 Persisted Connection Data
To be able to keep state of a ReTCP session among several TCP connections
and possibly even in the face of intermediate machine failures, it is necessary
to store some state information of ongoing ReTCP sessions. This state needs
to be stored on persistent storage, where it can survive crashes and reboots.
This state information needs to be updated frequently and kept in a consistent
state with the other peer's persisted state, requiring some additional control
data exchange between the two peers.

The most important information that gets persisted are the send- and receive-
bu�ers, as shown in �gure 2.6. The persisted information is described below.

• The send bu�er, including all unacknowledged packets

• The SND.UNA pointer, set to the �rst not yet acknowledged sent packet
sequence number

• The receive bu�er, including all unconsumed packets

22 CHAPTER 2. DESIGN

Note that the SND.NXT pointer needs not be saved; it can be reconstructed
from the send bu�er state when it is reloaded. Similarly, the RCV.NXT pointer
of the receive bu�er indicating which packets have already been acknowledged
needs not be held on persistent storage; it can be rebuilt the �rst time an Ack is
sent, as it simply describes up to which sequence number all packets have been
received. If the receive bu�er is empty, it will be set to the sequence number of
the �rst packet received, plus one. The SND.UNA pointer is needed in case the
send bu�er is empty; in that case, it corresponds to the sequence number of the
next packet that will be sent, and SND.NXT will be initialized to SND.UNA.

Apart from the bu�ers and the packets inside them, some �accounting infor-
mation� for each connection also needs to be stored:

• The maximum bu�er size for both send and receive bu�er

• Connection information that matches the persisted state to a certain con-
nection, where a connection is identi�ed by a connection ID and a peer
name, as described in 2.3.2

• The time the state was last modi�ed, for garbage collection

2.3.2 Connection Setup and Termination
Session Handshake A ReTCP connection between two peers (not necessarily
an MQTT client and broker, as the range of application of ReTCP is not limited
to this scenario) is established as follows. The client wishing to communicate
over the ReTCP layer �rst opens a TCP connection to the server4. After the
TCP connection is set up, i.e. the TCP 3-way handshake has succeeded, a
ReTCP session is established. To this end, another handshake is performed, this
time on the ReTCP layer. The client initiates this ReTCP session handshake
by sending a Connect packet, which is described in �gure 2.4. The connect
contains the following variable header data:

Connection ID Within MQTT, any client is only allowed to have at most
one connection to a broker at any time. Other applications, of course,
do not have such a limitation. In that case, the server listening for client
connections must be able to match an incoming ReTCP connection to
an existing ReTCP session or create a new ReTCP session if none exists.
To enable the server to distinguish di�erent ReTCP connections, each
connection is assigned a connection id.
This ID is chosen by the client, and the server does not care about how
it's chosen. It is the client's responsibility to ensure that the (client ID,
connection ID) tuple is unique.

Session Validity In case the ReTCP connection to a client breaks (due to a
failure of the server, the client, or the network), the server will keep all
relevant data of this connection on persistent storage, so that the connec-
tion can be re-established. However, it might be desirable to limit the
lifetime of the persisted data, so that data of clients that break and never

4To a well-known port number where the server listens to ReTCP connections. Usually a
server will also listen on other ports for �TCP-only� connections, for message exchanges that
do not need the resiliency o�ered by ReTCP.

2.3. DESIGN OF THE RETCP PROTOCOL 23

reconnect does not �ll up the server's disk over time. With the session
validity �eld, a client can tell the server how long to store data pertinent
to this connection. This is only a hint for the server; the server can still
choose to ignore this value and use a di�erent one, see below. If set to 0,
the client indicates to the server that it wants to use the maximal allowed
time span allowed by the server. Otherwise, the time span is measured
in seconds, allowing a maximal validity of 232 − 1 seconds, well over a
century, which should be su�cient for all practical purposes.

Peer Name Length The length, in bytes, of the client's name. This should
equal the remaining amount of bytes in the message.

Peer Name The client's name. Again, the server does not care how the client
chooses this name, but it must be unique among all clients connecting to
this server. In the context of MQTT, this requirement is pretty simple
to ful�ll, since there already is such a client name, the MQTT client ID.
However, several alternatives would work equally well:

• Clients could choose a unique hardware-related value as their name,
e.g., the MAC-address of their NIC.

• The IP/port combination, if it is assumed to remain static.
• The hostname/port combination, if it is assumed the the hostname

will always resolve to the same physical machine.
• If no such value is available to the clients, they could randomly choose

an ID. If the ID space is chosen large enough for the number of clients
in a system, and the generation of the ID is reasonably �random�, the
probability of a collision can be made arbitrarily small.

• If none of the above approaches work, a small extension to the ReTCP
protocol could be used to solve the problem: When a client connects
to a server for the very �rst time, it asks the server to assign a name
to it by setting a �ag in the Connect message. The server, in it's
reply, includes a unique name that this client is henceforth allowed
to use.

Upon reception of a Connect request, the server sends a Connack. The
Connack has the same structure as the Connect packet but will have the
Conn and Ack �ags set, and the Reconn �ag if this was set in the request.
Unless the Rset �ag is also set, the ReTCP session handshake was successful,
and the client can now start sending data. The connection establishment be-
tween an MQTT client and a broker, including messages on the TCP, ReTCP,
and MQTT layer, is shown in �gure 2.5.

The session validity �eld in the server's response indicates to the client how
long the server is willing to keep data relevant to this session around. The server
should use a value less or equal to that requested by the client in the Connect
request.

Re-establishing ReTCP Sessions When performing the handshake de-
scribed above, both peers need to know whether they are establishing a new
ReTCP session or resuming a previously uncleanly disconnected session. In

24 CHAPTER 2. DESIGN

Figure 2.4: ReTCP Connect Packet

Figure 2.5: MQTT connection establishment over ReTCP stack

2.3. DESIGN OF THE RETCP PROTOCOL 25

the latter case, both peers will have state information for this session stored
persistently.

Therefore, before connecting to the server, the client checks whether state
exists for the server address and port it wants to connect to. If such persisted
state exists, and the client decides it want to resume the according session, it
sets the Reconn �ag in the Connect request. Normally, the previous state is
then reloaded by both peers during the handshake.

It is possible that a client crashes or gets disconnected during termination
of a ReTCP session. in that case, it is possible that the client failed to delete
the state for a session, while the server deletes it. If a client tries to restore a
session for which the server does not have data, it should set the Rset �ag in
its response. When the client receives a Connack with the Rset �ag set, it
should delete the persistent state for this session, and reattempt the handshake
with the Reconn �ag not set. It should be noted that this situation merely
indicates that the ReTCP session termination was interrupted; a server must
never delete state for a session when there are packets not yet delivered to the
application, so no application packets are lost even when a handshake attempt
fails due to a Rset.

Even when the state of a previous session does exist, a client can choose
to ignore it by not setting the Reconn �ag during the handshake. When a
server receives a connection request with an unset Reconn �ag, it must discard
any previously persisted state information, even when there are packets not yet
delivered to the application.

Terminating ReTCP Sessions A session is disconnected by either of the
peers sending a Disconnect message. Unlike TCP, a ReTCP session cannot be
half-open; disconnecting a session always closes data streams in both incoming
and outgoing direction. After sending the disconnection command, a peer must
no longer send packets to the other peer. Upon reception of a Disconnect, a
peer should no longer accept new packets from the application. A Disconnect
message must be acknowledged with a control message with both the Disconn
and the Ack bit set.

A disconnection request or acknowledgment must not be sent while there
are still unsent packets in the send bu�er. Also, the ReTCP layer should stop
accepting new packets from the application layer once the Disconnect or dis-
connection acknowledgment, respectively, have been sent. Both peers must,
however, deliver any remaining packets in the receive bu�er to the application.
Upon sending or reception, respectively, of the disconnection acknowledgment,
both peers should delete any persistently stored data of that session.

2.3.3 Data Flow
Sliding Windows Once the peers have set up a ReTCP session, they are
ready to send and receive data. The data �ow much resembles that of the
underlying TCP: both peers use a bu�er for packets received from the lower
(TCP) layer (the receive bu�er), and a bu�er for outgoing data received from the
upper application layer (the send bu�er). The data in the bu�ers corresponds to
the contents of a �sliding window� moving over the stream of packets, whereby
each packet is assigned a sequence number to identify its position in the stream.

26 CHAPTER 2. DESIGN

Figure 2.6: Sliding Window Protocol

The sliding window protocol is illustrated in �gure 2.6. New packets are
added to the right-hand side of the bu�ers. In the illustration, the next sent
packet would be added at position 6. The send window position is always
such that all packets to the left of it have been acknowledged. A cumulative
acknowledgment scheme is used, i.e., an Ack message with an Ack header
�eld value of n means the receiver has received all packets up to and including
n5. The send window is moved forward to the right by every acknowledgment
received that acknowledges one or more previously unacknowledged, consecutive
packets starting from the left side of the window. The receive window position
is always such that all packets left to it have already been acknowledged to
the sender. The size of the receive window depends on the amount of available
bu�er space and the amount of data that is bu�ered and acknowledged but not
yet consumed by the application.

In contrast to TCP, the bu�ers states are persistently stored and need to be
updated on certain events. Every time the send or receive window advances,
packets to the left of it can be deleted from persistent storage, since they are
delivered to the application (in the case of the receive window) or acknowledged
by the other peer (send window). Also, packets added to the send bu�er will
immediately be persisted, so that the sending application is assured that the
packet will not be lost. Note, however, that there is no need to immediately
persist the receive window when new packets arrive over the network, since these
packets are still persisted in the sending peer's send window. The packets must
be persisted before the according acknowledgment is sent.

The meaning of �delivered to the application� also di�ers from that of TCP
in the context of ReTCP. For TCP, delivering a packet simply means that the
application has read it from the bu�er. Since ReTCP aims at dealing with
application failures as well as network failures, this is not good enough. An
application might read a packet and then crash before processing it. ReTCP
guarantees that even in that case, no data loss will occur. Therefore, a con�rma-
tion from the application is needed that it is done processing the packet. This
con�rmation can be either an explicit noti�cation of the ReTCP layer by execut-
ing a callback function in the stack whenever a packet has been processed, or it
can be achieved implicitly by having the ReTCP stack execute an API function
of the application that only returns after the packet is successfully processed.

In TCP, each peer must advertise the currently available space in its receiving
5�packet n� standing short for �the packet with sequence number n�

2.3. DESIGN OF THE RETCP PROTOCOL 27

window. The sender is not allowed to use a larger send window size at any time.
This receiver-controlled �ow-control is to avert situations where a fast sender
overwhelms a slower receiver by sending more data than the latter can handle.
ReTCP does not need such window advertisements, because it can rely on the
�ow control of the underlying TCP. The receiving ReTCP can simply use a
bu�er size limit suitable for the present hardware and application requirements,
and stop reading data from the TCP layer when this limit is reached. When
the application using ReTCP cannot drain the bu�er as fast as the sender is
transmitting new data, the ReTCP bu�er will �ll up, ReTCP will stop reading
data from the TCP layer, causing the TCP receive bu�er to �ll. At this point,
TCP's �ow control will kick in and stop the sender from transmitting too much
data. A receiver could even shrink it's receive window during a ReTCP session
without a�ecting the sender (a behavior which is theoretically possible for TCPs
as well, but strongly discouraged by [RFC793]).

Packet Retransmission Again, because TCP is used as the basis for our
persistency layer, it is not necessary to re-invent the wheel for the detection and
correction of packet loss. Along with �ow control, TCP already perform this
tedious task, and performs it well. However, in some situations, additional steps
have to be performed for in-order and reliable delivery.

1. TCP can lose unsent data if a peer gets completely disconnected. When
a peer cannot be reached anymore (be it due to the network failing, the
machine crashing, or the operating system crashing), the other peer's TCP
will eventually time out, tear down the connection, and discard any unsent
data in the send bu�er6. Further attempts to send data by the application
will fail.
In ReTCP, data loss is prevented in this situation, because unsent data is
persistently stored. When the ReTCP session is re-established, however,
TCP's guarantees for reliable, in-order delivery no longer apply. ReTCP
has to ensure this for any packets in it's send bu�er.

2. When the network connection and the receiving host are OK, but the
receiving application (including the ReTCP layer) hangs, TCP will happily
deliver any new data to the receiving peer as long as the TCP receive bu�er
does not run full. As an example, think of a Java VM that hangs, while the
underlying operating system is running normally. The sending application
can still write data to the network, but the receiving application will never
read it. In the absence of new application data eventually �lling up the
receiver's TCP bu�er, this situation might persist inde�nitely. Using a
normal TCP connection, the sending application has no way of telling
whether the receiving application has actually read a sent packet from the
TCP layer.

Problem 1 can be solved relatively easily by the use of sequence numbers. They
allow the receiver to add the packets to the ReTCP bu�er in the correct or-
der even across multiple TCP connections, and allow the sender to detect lost
packets after session re-establishment by the absence of their acknowledgments.

6see 4.2.3.5, �TCP Connection Failures�, in [RFC1122]

28 CHAPTER 2. DESIGN

Note that 1 will never cause missing acknowledgments as long as the underlying
TCP is connected.

To speed up the synchronizing process of the two peers in case of a ses-
sion re-establishment, a �fast retransmit� algorithm is used. When a session is
re-established, and the �rst data packet sent in the reestablished session has
sequence number n, and the next received Ack has an Ack header �eld value
of m < n, then all packets between m and n, exclusive, are immediately resent.

Problem 2 is requires a somewhat more involved solution. ReTCP solves
it by using retransmission timers for sent packets the same way TCP does. If
no acknowledgment is received for a packet by the time of the retransmission
timeout (RTO), the packet is re-sent. Since this retransmission timeout period
must take into account the time required for the Transmission on the TCP
layer and the time required by ReTCP for adding the packet to its receive
bu�er and persisting it, a �xed RTO value cannot be used. As stated before, a
ReTCP packet can have any size between 1 byte and 256 MB, and depending
on the application, packet sizes during a ReTCP session might have a large
variance. How the retransmission timeout is calculated depending on packet
size is described in the next section.

Using RTO-based retransmissions on top of a carrier that already provides
reliable delivery is not as straightforward as it might seem at �rst glance. The
�rst pitfall an implementation needs to avoid is known as the �TCP meltdown�
e�ect [HOI+05]. Note that ReTCPs timeout period will usually be longer than
TCP's, since it also includes the processing time on the ReTCP layer. Because
the TCP layer adds a level of indirection to ReTCP's timeout calculation, this
is not necessarily true at all times. The RTO values of both TCP and ReTCP
are updated based on received acknowledgments. Since acknowledgments on
the TCP layer can be more frequent than those on the ReTCP layer, TCP will
adapt its RTO more quickly. Sudden changes in the RTO by TCP can thus lead
to an inverted situation where TCP's timeout is larger than ReTCPs.

Such a situation can lead to a meltdown, dramatically decreasing or even
completely stalling a connection. The meltdown e�ect occurs when two trans-
mission protocol layers that both use RTO-based resends are stacked upon each
other, and when packet loss due to congestion is present. The lower layer will
detect the congestion more quickly and adapt its RTO, possibly to a value
larger than the RTO of the upper layer. The upper layer will then start retrans-
mitting packets at a faster rate than the lower level, adding to the congestion
and therefore further slowing down the connection, which in turn triggers even
more unnecessary resends on the upper layer. This vicious circle is well known
in TCP-over-TCP applications such as VPNs where TCP tra�c is tunneled
through a TCP-based SSH connection (see, for example, [Titz01]). Observe
that the meltdown can only happen when there is unsent data in TCP's send
bu�er.

Another potential pitfall is that the absence of an acknowledgment within
the RTO does not necessarily mean that there is something wrong with the other
peer or the TCP connection. An acknowledgment can also simply be delayed
because it is queued behind a large packet at the other peer. While ReTCP
is busy writing the large packet to the network, the Ack can obviously not be
sent.

Based on above considerations, the following retransmission algorithm is
executed when a timeout expires. Let RTOTCP := TCP's current RTO, and

2.3. DESIGN OF THE RETCP PROTOCOL 29

RTOReTCP := ReTCP's current RTO.

1. When a thread is currently reading a packet from the network, wait until
this thread has read the entire packet. If the next incoming packet is the
missing Ack, return.
To avoid waiting forever when the other peer has crashed or the network
fails, only wait while data is being read. If no data is received within
RTOTCP , proceed to the next step.

2. When the outgoing TCP bu�er is empty, resend the packet. Backo�
ReTCP's RTO (see 2.3.4), and return.

3. If RTOReTCP < RTOTCP , backo� the ReTCP RTO, but do not resend
the packet, since this situation could lead to a meltdown. Re-schedule the
retransmission timer with the new RTO value.
A value MAXRTOReTCP is used as the upper bound for this doubling
operation. When 2 ∗RTOReTCP > MAXRTOReTCP , do not re-schedule
a retransmission; instead, proceed to step 4.

4. If MAXRTOReTCP is exceeded, it is likely that we cannot send any more
data, either because the remote peer has crashed, or because of a network
failure. Therefore, pause all operations writing to the network, and wait
for the TCP send bu�er to drain. When the send bu�er has drained, it
means data can still be sent; in this case, the timed-out packet is now
resent.
Again, to avoid waiting forever, when the TCP send bu�er size does not
change within RTOTCP the remote peer or network is assumed dead. In
that case, the ReTCP session is terminated. Unsent packets remain of
course persisted, so the session can be resumed later.

In a situation where the receiving application hangs but manages to recover after
some time, its ReTCP layer will restart reading data from the TCP bu�er and
send acknowledgments. If previously read packets have not been lost, the re-sent
packets will then be duplicates, which the ReTCP layer of the receiver will notice
due to the sequence numbers, and not deliver them twice to the application. In
the (perhaps more likely) event that the receiving application never recovers,
ReTCP will give up the retransmission of a packet after a �xed amount of tries
(currently 10, but con�gurable). When a packet is not acknowledged after this
number of retries, the receiver is considered �dead�, and the ReTCP connection
closed. If this event is logged, it can serve as hint to the systems administrator
that something with the receiving application is wrong and needs �xing; a clear
advantage over the �TCP-only� connection, where this event might go unnoticed,
as described in 2.

Operation To enable ordering and retransmission as described above, the
ReTCP header for data packets contains Ack data as depicted in �gure 2.3.

To reduce the number of ReTCP packets, delayed acknowledgments can be
used on the ReTCP level. It must be considered that using delayed ReTCP
Acks can harm TCP's own delayed Ack implementation ([RFC1122]) when
the sum of packet processing time and delay of ReTCP is larger than TCP's
delay.

30 CHAPTER 2. DESIGN

Also, TCP implementations should implement the Nagle algorithm ([RFC896,
RFC1122]). The Nagle algorithm avoids sending many small application writes
as single TCP packets. It states that small amounts of data are not sent im-
mediately when there are still outstanding TCP Acks from previously sent
data. Instead, data is bu�ered and sent only when all outstanding data has
been Acked, or a full-sized TCP segment can be sent. What this means for
the ReTCP layer is that subsequent ReTCP packets are likely to be sent as
a single segment on the TCP layer. Therefore, a ReTCP Ack followed by a
ReTCP data packet are likely to be sent in a single TCP segment. Compared to
a single ReTCP packet containing a delayed ReTCP Ack and the application
data, only 3 bytes for the ReTCP header are wasted. So using delayed Acks on
the ReTCP level might save 3 sent bytes per received data packet, but perhaps
more likely, it prohibits TCP from sending the ReTCP Ack together with the
delayed TCP Ack, thus wasting 40 bytes for the TCP and IP headers.

Given that for QoS 0, a client publishing a message will not get a reply from
the broker, and that most clients will have a mean message inter-arrival time
greater than a few hundred milliseconds typically used for TCP's delayed-Ack
timeout, at least in the context of MQTT disabling the use of delayed ReTCP
acknowledgments and enabling nagling is clearly preferable.

Implementation Requirements To assure that recovery from an applica-
tion failure is possible when the respective communication end-point restarts, a
few design principles need to be followed in the implementation of the protocol:

• Received packets are only Acked after they are added to the persistent
inbound bu�er.
Acking packets before adding them to the bu�er could lead to lost packets,
if the end-point fails after sending the Ack but before adding the packet
to the bu�er.

• Received packets can only be deleted from the inbound bu�er after com-
plete processing by the application.
Normally, a packet is removed from the network bu�ers as soon as it has
been handed to the application for further processing. However, since the
application can potentially crash during processing, packets need to re-
main in the inbound bu�er until the application signals to the persistency
layer that a particular packet has been fully processed (e.g. its data stored
to disk or sent to other nodes) and is no longer needed.

• The application layer needs to be noti�ed when sent packets are persisted.
The persistency layer guarantees that no packets are lost once they are
received from the application layer and added to the outgoing bu�er. The
application in general will want to know from when on this is the case.
This can be achieved by either having the application use a synchronous
method call of the persistency layer that returns only once the packet is
persisted, or by explicitly notifying the application that a packet has been
received and persisted by a control message or callback method.

2.3. DESIGN OF THE RETCP PROTOCOL 31

2.3.4 RTO Calculation
When retransmission timers are used to resend failed packets, it is key that
these timers are dependable. Too small RTO values will cause unnecessary
resends, which wastes sending power and may add contention to the network.
Too large RTO values, on the other hand, mean that a sending application will
be unnecessarily slowed down when packet loss occurs.

[RFC2988] describes how the RTO is calculated for TCP. The algorithm is
listed in appendix A.1. The parameters the algorithm uses are those suggested
by [JK88]. The basic idea behind the algorithm is to base the current timeout
on sampled round-trip time measurements from the past, and also take into
consideration the measured variance7 of the RTTs. A variable SRTT contains
the smoothed average of all past RTT measurements. The average is calculated
according to an exponential weighting of the measurements; each new measure-
ment is added to the SRTT with twice the weight of the previous measurement.
This way, newer measurements are more relevant for the current value, which
allows the RTO to adapt quickly to changing network conditions, but sud-
den jumps in the RTO due to few outliers in the measured RTTs are avoided.
RTTV AR, the round-trip time variance, is updated in a similar fashion.

Acknowledgments for re-sent segments are ambiguous, since it is unclear
whether they are a response to the original transmission or a retransmission.
Therefore they are excluded8 from the RTO calculation [KP87].

Unfortunately, TCP's RTO algorithm cannot be used by ReTCP without
modi�cation, because TCP is stream-based, while ReTCP is packet-based. Re-
member that a packet can have any size up to 256 MB. If ReTCP were to use
TCP's RTO algorithm, and an application would send many small packets, each
taking e.g. 2 seconds to transmit, then the RTO would quickly converge to a
value close to 2 seconds. If the application then sent a 256 MB packet, it would
almost immediately time out. On the other hand, the RTO would be greatly
skewed by large packets, yielding a too large value for small packets. Using
TCP's RTO directly clearly leads to inadequate RTO values. An algorithm also
taking into account the packet size is needed.

The segment sizes TCP sends can vary, too; still, TCP does not include the
segment size in its RTO calculation9. One might ask why the TCP retransmis-
sion algorithm works well in spite of this fact. The answer is that segment sizes
in TCP are limited. By default, this MSS limit is 536 bytes; during connection
setup, a TCP may indicate that a larger MSS can be used for that connection
[RFC879, RFC793]. For an Ethernet network, for example, the maximal IP
datagram size is 1500 bytes, yielding a TCP MSS size of 1460 bytes. The time
needed to send a segment depends on the network bandwidth and the segment
size. Even for very small bandwidths, the additional time required to write

7The term �variance� is actually misused by [RFC2988]. RTTV AR measures the mean
deviation rather than the variance or the standard deviation. The mean deviation is simpler to
calculate and an approximation of the standard deviation. This paper sticks to the convention
of the RFC, and the mean deviation is referred to as �variance�.

8Unless TCP's timestamp option is used. It allows the sender to place a timestamp in
the TCP header, which the receiver will echo in it's Ack, allowing the disambiguation of the
Acks and a more frequent update of the RTO, which can improve performance.

9TCP does, however, take into account that the RTT may change due to an increase of
the send window during the slow-start phase. This is why the RTTVAR is multiplied by 4
in the algorithm. The assumption is that doubling the window size, in the worst case, also
doubles the RTT.

32 CHAPTER 2. DESIGN

Figure 2.7: ReTCP RTO Calculation

a segment of size MSS compared to writing the smallest possible segment (21
bytes, 20 for the TCP header and 1 byte of application data) is negligible for
all practical purposes. The same is obviously not true for ReTCP, where packet
sizes can vary within many more orders of magnitude.

For ReTCP, an algorithm that computes the RTO based on packet size is
required.

The proposed algorithm is based on the following assumption: the round-
trip time of a packet increases linearly with its size, with a �xed initial latency.
More precisely, RTT = 2l + p

R + D ∗ x + y, where l is the link latency, p is the
packet size, R is the link bandwidth, x the processing delay of the ReTCP layer
per data unit, and y a �xed latency of the ReTCP layer. Thus, the RTT takes
the form RTT = a ∗ p + b, where a and b are unknown. While this assumption
clearly holds true for the network, it has to be veri�ed for an actual ReTCP
implementation.

In the proposed algorithm, the smoothed round-trip time is a point in the
two-dimensional plane de�ned by the two axes packet size and RTT. Therefore,
a smoothed size value SSIZE is introduced, that is updated the same way as
SRTT . Whenever the RTO is updated with a new measurement, the point
(SSIZE, SRRT) moves along the line de�ned by a ∗ p + b. This allows us
to compute the smoothed scaling factor SSCALE = a, which is the slope of
this line. Just as for the SRTT , the measured variance for SSCALE is also
maintained as SCALEV AR and used when computing the RTO.

The RTO with this algorithm is no longer a �xed scalar value, but a function
of the packet size:

RTO(p) = RTO(SSIZE)+(p−SSIZE)∗SSCALE+|p−SSIZE|∗SCALEV AR

The ReTCP RTO calculation is summarized in �gure 2.7.
Because the 2-dimensional ReTCP RTO algorithm has more unknowns than

the scalar TCP RTO algorithm, the "uncertainty" of a calculated RTO(p) value
is larger. Note that the algorithm is designed in a conservative way where
the variance of both the SRTT and the scaling factor add to the calculated
RTO. Especially when the algorithm is not in a �steady state�, i.e., only few
measurements have been made or the parameters a and b �uctuate, the variance

2.3. DESIGN OF THE RETCP PROTOCOL 33

of the calculated RTO can grow very large. Therefore, it makes sense to place
additional upper bounds on the RTO calculation:

• RTO(p) should not be larger than RTO(SRTT) if p ≤ SRTT .

• RTO(n ∗ p) should not be larger than n ∗RTO(p)

• additionally, an absolute upper bound based on the characteristics of the
network and the receiving application may be placed on the RTO.

The proposed algorithm is listed in appendix 4. Note that for constant packet
sizes, it equals the TCP RTO algorithm.

Simulating the RTO Calculation To verify that the algorithm indeed pro-
duces good results, i.e. the calculated RTO converges towards the actual round-
trip times, the behavior of the algorithm has been simulated for several scenarios.

• The �rst scenario aims to �nd out how fast the computed RTO converts
towards a constant RTT. The RTT for a single MSS is simulated to be 2
seconds.

• Scenario 2 considers a slow change of the characteristics of the underly-
ing network. Round-trip times slowly and steadily increase from 2 to 3
seconds.

• The last scenario investigates how the algorithm reacts to a sudden in-
crease of the RTT from 2 to 3 seconds.

The round-trip times used in all 3 scenarios have a deviation σ of 10% of the
current RTT value.

Keep in mind that the assumption of the algorithm is that RTT times depend
on packet sizes. Hence, the RTT values de�ned above are minimal RTTs of a
packet of minimal size. Additionally, a linear delay between 0 and 1 seconds
depending on the packet size is added to the minimal RTT.

The simulation calculates both TCP's and ReTCP's RTOs. It is assumed
that a ReTCP packet of size n∗MSS causes n TCP segments to be sent, which
generate exactly n Acks so that each TCP Ack can be used to update the
TCP RTO. (I.e., no packet loss or duplication is assumed). Furthermore, it is
assumed that the nth TCP Ack and the Ack for the ReTCP packet arrive at
the same time (i.e., delayed TCP Acks are used, and the TCP ack piggybacks
on the ReTCP Ack). The simulation results are shown in �gures 2.8 to 2.10.
The x-axis shows the number of received TCP-Acks, and the y-axis the current
retransmission timeout for both TCP and ReTCP.

The �rst �gure shows that both RTOs converge towards the RTT and reach
a steady state after some 15 or 20 received acknowledgments. In the third
simulation, the result of the exponential RTO backo� is clearly visible, and both
RCP and ReTCP require around 20 to 30 Acks before the RTO is adapted to
the new RTT. Perhaps most interesting are the results of the second scenario. As
can be seen, ReTCP reacts more heavily to RTT changes than TCP does. The
ReTCP graph shows some pronounced spikes and tends to be more conservative
than TCPs. This is not surprising bearing in mind that the ReTCP algorithm
has a greater degree of uncertainty, and the variance in both dimensions the

34 CHAPTER 2. DESIGN

Figure 2.8: Simulated RTO convergence towards constant MSS RTT

Figure 2.9: Simulated RTO calculation for steady changes of RTT

Figure 2.10: Simulated RTO calculation for sudden change in RTT

2.3. DESIGN OF THE RETCP PROTOCOL 35

algorithm operates in add to the resulting RTO. It is important to note, however,
that in all 3 scenarios the ReTCP RTO converges to a value close to the RTT
after about the same amount of received Acks as TCP's RTO.

Chapter 3

Implementation

The �rst section of this chapter describes the design of the existing MQTT
network stack. The next section then shows how ReTCP was implemented
within this architecture.

3.1 The MQTT Communication Stack
3.1.1 Stack Architecture
The MQTT protocol it is implemented in a variety of languages for di�erent
platforms. The implementation discussed here was written as an addition to
the Java-based MQTT communication system. The Java-based communication
stack consists of several modules stacked on top of each other, each performing
its speci�c task in the processing of the incoming and outgoing data streams;
hence the name �stack�, which does not refer to the stack of layers of the TCP/IP
network layer model. The entire MQTT communication stack is part of the
application layer in the TCP/IP model.

An important design goal of the MQTT stack is �exibility. Therefore, the
stack can be dynamically composed of an arbitrary amount of modules, for
which the only requirement is adherence to an IProtocolHandler interface.
This modular design was directly inspired by the design of the x-kernel Proto-
col Framework [xkernel]. By virtue of this design, the stack functionality can
be extended with, e.g., new protocols without the need for recompilation of
the client or broker libraries. The modular design also facilitates code re-use,
because the same module can be used as part of di�erent stacks. To replace a
TCP- by a UDP-based stack, for instance, it su�ces to replace the lowest-level
module in the stack, the Net module. The overall architecture of an MQTT
stack is depicted in �gure 3.1. A short description of each component is below.

While TCP provides a stream-oriented API, data within the MQTT stack
�ows in packets. A packet essentially consists of a payload of application data,
and a list of headers that the modules modify while the packet is passed along
the chain of modules. Each protocol module has the possibility to add a header
when a packet is moved downwards and remove it when a packet is moved
upwards, but is not required to do so.

The individual stack modules are loosely coupled. The packets �ow asyn-
chronously between the modules, coordinated by a singleton dispatcher.

36

3.1. THE MQTT COMMUNICATION STACK 37

Figure 3.1: MQTT communication stack

Dispatcher The dispatcher is responsible for passing packets between the dif-
ferent stack modules. Rather than directly passing packets to other mod-
ules, a module wishing to send a packet to its upper or lower neighbor
hands the packet to the dispatcher, together with the target. The dis-
patcher makes sure every module is only processing at most one packet
at any point in time, freeing the module developers of the tedious task of
thread synchronization of the module's data structures.
The dispatcher also has �ow-control mechanisms. When a module indi-
cates it has trouble keeping up with the processing of packets, the dis-
patcher will stop delivering packets to this module, until the module in-
forms the dispatcher that the overload situation has cleared and it is ready
again.
Besides packets �owing trough the stack, the dispatcher also handles
timers. Modules that want to be informed after a given amount of time
has passed can register a event, and will be called back after the speci�ed
time by the dispatcher, so they can process this event. Timers can be
scheduled once-only or periodic.
There is exactly one dispatcher per JVM that is used by all stack instances
concurrently.

Protocol Anchor The protocol anchor manages stack instances of a certain
type. The life-cycle management of the stack is performed by the anchor;
it instantiates, starts, and stops the stacks. On the broker side, protocol
anchors are listeners waiting for client connections; on the client side, ac-
tivators instantiate the stack when the client opens a connection. Section
3.1.3 explains the stack instantiation process in more detail.

Comms Manager The comms manager is responsible for the entire commu-
nication system of the client or broker. It maintains a set of protocol
anchors (listeners and activators) according to the system con�guration.

Pub/Sub Engine The pub/sub engine is the part of the MQTT application
that communicates with the stack. As its name implies, its responsible for
publishing messages and handling subscription requests.

38 CHAPTER 3. IMPLEMENTATION

Messaging Module This is always the topmost module of the stack. It im-
plements the MQTT protocol. Here is where, e.g., a Pubrec message is
generated when a Publish is received with QoS 2. The messaging module
will pass the Publish message to the Pub/Sub engine when the 2-phase
message exchange is complete.

Net Module Is the lowest stack module and interfaces to the network. It
converts packets it receives to a stream of bytes that are written to the
network socket, and creates packets from data read from the incoming
network byte-stream (called �deframing�). To that end, a small header
indicating the packet length is used. Network I/O is done either using a
thread or using Java's NIO.

Generic Modules Between the Messaging and the Net module, an arbitrary
number of generic modules can be plugged into the stack. The can pro-
vide functions such as data transformations, encryption, segmentation /
reassembly, and much more.

3.1.2 Anatomy of a Module
Besides methods for life cycle management (init, start, stop), a module o�ers
various handler methods to handle sends, receives, and timeouts. The modules
do not call these methods directly on each other; it is the dispatcher's task to
execute the protocol stack by calling the handler methods of the stack modules.
A module provides the following handlers:

handleSend gets called by the dispatcher as a packet traverses the stack in
the sending direction. Once the module has �nished the processing of
the packet, it returns control over the packet back to the dispatcher by
executing a callback method. The dispatcher in turn calls handleSend on
the next-lower module. Once the packet has reached the lowest module,
it is written to the connection socket.

handleReceive is used in a similar manner as handleSend, but for received
packets traveling in receiving direction through the stack.

handleTimeout is called by the dispatcher when a timer that the module has
registered expires. To let the module know which timer expired (as a
module can register any number of timers), the timer is identi�ed by an
ID that was assigned when it was registered. Additionally, a module can
register an arbitrary object on timer creation, which will be passed back
to the module in the handleTimeout handler.

shutdownSend is executed when the sending direction of the stack is being
closed.

shutdownReceive is executed when the receiving direction of the stack is being
closed.

3.1.3 Stack Instantiation
How and when the stack of a peer is created is somewhat di�erent for brokers
and clients. In both cases, the stack con�guration is dynamic, and each available

3.1. THE MQTT COMMUNICATION STACK 39

stack type is described by a list of module names and optionally some parameters
for the modules. The comms manager translates the module names into Java
class names, creates a protocol anchor for each type, and passes the list of class
names and parameters to it.

Broker The broker con�guration de�nes a set of listeners and also speci�es
what port they should listen on. On broker startup, a ServerSocket is created
for each listener and waits for client connections on the speci�ed port. When
a client connects, a the listener creates a new stack, and passes the connection
socket to it.

Client On the client side, a stack is instantiated each time the client decides
to connect to a broker. Which type of stack gets instantiated depends on the
connection scheme the client uses to specify the broker address. For TCP,
the scheme is tcp://<broker address>:<broker port>. For ReTCP, a new
scheme, retcp://, has been added to the list of available stack types.

Once a stack anchor (listener or activator) decided to instantiate a stack, the
process is the same for client and broker:

• The anchor creates all module objects with the given list of class names.

• Each module is given a reference to its upper (receiving direction) and
lower (sending direction) neighbor.

• The stack is initialized by passing module-speci�c parameters to each mod-
ule.

• The stack is started by calling a start method on each module. The
required steps to start a module depend on the module; a thread-based
Net-module will, e.g., start a thread reading from the connection socket
when its start method gets called.

3.1.4 Stack Termination
A stack instance is terminated by shutting down the data streams in both send-
ing and receiving direction. The sending direction is shut down by a �shut-
downSend� command traveling downwards in the stack; i.e., the dispatcher calls
shutdownSend in one module after the other in sending direction, starting from
the module that initiated the shutdown. Once the �shutdownSend� has reached
the lowest module, it is converted into a �shutdownReceive� and its direction
reverted; it travels back up the stack, until it is back at the module that initi-
ated the shutdown. Similarly, a �shutdownReceive� initiated by a module is sent
upwards, converted into a �shutdownSend� at the topmost module, and travels
downwards until it reaches the initiator again.

In normal operation, a �shutdownSend� is initiated by the topmost module
when the MQTT application wants to disconnect from another MQTT host
and closes the stack. The �shutdownReceive� is normally initiated by the lowest
module, when no more data from the network is available. For instance, consider
an MQTT client that wants to disconnect from a broker (TCP connection). It

40 CHAPTER 3. IMPLEMENTATION

sends a Disconnect MQTT message to the broker and then closes its send-
ing direction. When the �shutdownSend� has received the Net module, the Net
module closes the outgoing TCP connection. Once the incoming TCP connec-
tion has been closed by the broker, the Net module sends a �shutdownReceive�
up the stack.

When an error occurs in the stack, the module where the error occurred
will shut down the stack. In that case, it sends both a �shutdownSend� and a
�shutdownReceive�.

Whichever module initiated the shutdown waits for the shutdown messages
to return and then informs the stack anchor that the stack has shut down. This
allows the anchor to update its data structures and remove the now defunct
stack.

3.2 The ReTCP Network Stack for MQTT
3.2.1 Module Design
The modular composition of the stack poses some problems when implementing
the ReTCP protocol described in chapter 2. The ReTCP stack needs to com-
municate with the application on top of the stack as well as with the underlying
TCP bu�ers.

Synchronous communication with the application is required because packets
must be persisted as soon as they are handed to the stack from the application,
and the stack must not delete packets from persistent storage before they have
been processed by the application. The loose, asynchronous coupling of the
modules through the dispatcher makes this di�cult unless the ReTCP module
is the top-most module in the stack.

On the other hand, ReTCP also needs access to the TCP layer to avoid the
TCP-meltdown problem. To avoid unnecessary resends, a packet must not be
resent at the ReTCP level when there is still unacknowledged data in the TCP
bu�er.

There are several ways of solving the problem that the resilient stack needs
to communicate with the application as well as the TCP layer. A discussion of
the di�erent approaches follows below.

1. A monolithic stack.
In this solution, the stack design is greatly simpli�ed by using a single
module doing all the work, from communicating with the application to
checking TCP bu�ers.

2. Additional synchronization messages within the stack.
The ReTCP functionality could be split up into two modules, one at the
top and one at the bottom of the stack. The top-level module is respon-
sible for the communication with the application, the persistence of the
messages, and the resilient delivery to the other network peer. As an in-
terface to the TCP layer, a second module at the bottom of the stack is
used. The two modules communicate by passing additional messages up
and down the stack.

3. Emulating MQTT QoS 2 within the stack.
This is a variant of solution 2; additional messages within the stack are

3.2. THE RETCP NETWORK STACK FOR MQTT 41

used for synchronization. Unlike 2, however, all ReTCP functionality is
implemented in a single module at the bottom of the stack. Synchroniza-
tion with the application is reached by using the MQTT QoS 2 protocol.
This is possible because the QoS 2 protocol mode o�ers exactly-once-
semantic.
When using the ReTCP stack, an application is required to use the QoS
2 protocol. The ReTCP module emulates the remote peer and performs
the 2-phase message exchange for every application message. During the
2-phase message exchange, the message gets persisted at the ReTCP level,
and then sent to the remote peer with the protocol described in chapter
2. Similarly, received messages are delivered to the application by the
2-phase QoS 2 protocol.

From a design point of view, 2 is the cleanest way to implement ReTCP within
the existing architecture: It retains the modular design of the stack, allowing
arbitrary other modules to be plugged into the ReTCP stack. Because syn-
chronization messages between the 2 ReTCP modules are only necessary when
the upper ReTCP module detects a time-out of a message, the performance
overhead added by the synchronization messages should be small.

Solution 3 seems like a very natural choice, as it requires few modi�ca-
tions because the already implemented QoS 2 message exchange protocol is
used. However, it introduces several problems. Its design requires the lowest-
level Net-module, which should only be responsible for providing the transport
layer, to know about application-level protocols. This makes the implementa-
tion much less generic. It also requires that the QoS 2 protocol mode be part of
future MQTT versions, eliminating one of the bene�ts of ReTCP. Moreover, the
amount of messages �owing through the stack is increased by a factor of 4 as
compared to solutions 1 and 2. This could have a very adverse e�ect on perfor-
mance, although the grade of the performance degradation is hard to estimate
without measurements taken with a real implementation.

As a proof-of-concept that the design of ReTCP works in practice and can
be used to o�er resiliency towards application and network failures to MQTT
in a much more bene�cial way than the current QoS 2 protocol, it has been
decided to implement the solution described in 1.

The implemented ReTCP stack hence comprises a single module responsible
for everything from reading packets from the network, to managing persistence,
to communication with the application. Several modules that operate indepen-
dently in the normal MQTT stack are part of the monolithic ReTCP stack.
Figure 3.2 outlines the various elements of the ReTCP stack module and their
interaction.

StackState The current state of the ReTCP stack is managed by a StackState
object. The StackState manages the send- and receive-bu�ers along with ac-
counting information such as SND.UNA, RCV.NXT, and bu�er sizes. The
state is updated each time a packet is received from the application by the
handleSend method, and each time a packet is received from the network by
the handleReceive method.

The StackState object is responsible for persistence. On each update, it
writes state information as described in 2.3.1 to the disk, so that the current

42 CHAPTER 3. IMPLEMENTATION

Figure 3.2: ReTCP stack module

state can be reloaded after an application failure. After a crash, the state before
the crash is reestablished by calling the StackState's resurrect method.

SocketStateReader To execute the retransmission algorithm presented in
section 2.3.3, the ReTCP layer needs information about the current state of the
TCP layer. Namely, it needs the current TCP RTO, send bu�er, and receive
bu�er states.

On machines running Linux, this information is found in the /proc/net/tcp
and /proc/net/tcp6 pseudo-�les. For each TCP-connection, these �les contain
a line with the local and remote port number and address (depending on whether
an IPv4 or IPv6 connection is used, the connection is listed in the tcp or tcp6
�le), and the required timer and bu�er information, along with many other
values that are mainly of interest for kernel debugging. The SocketStateReader
object provides these values to the ReTCP layer by reading them from the
relevant tcp[6] �le. Obviously, this class only can be used on Linux based
machines, where the /proc �le system is available. For other operating systems,
this class needs to be replaced.

3.2.2 Persistent Data Store
Persistency Framework To persist data, the StackState object uses IBM's
ObjectManager Java library. The Object Manager allows Java programs to store
and update objects under the scope of a transaction, i.e., with guaranteed ACID
properties:

• Changes of a transaction are committed atomically;

3.2. THE RETCP NETWORK STACK FOR MQTT 43

• Changes of a transaction are isolated from other transactions in other
threads;

• Changes of a committed transaction are durable.

Java objects managed by the Object Manager are persistent and survive JVM or
even machine restarts1. To guarantee atomicity of transactions, a write-ahead
log is used, as in many database systems. The Object Manager is optimized to
be as fast and lightweight as possible. In can handle write rates of up to around
30 MiB per second and is capable of managing data structures that do not even
�t into the available memory.

To manage an object with the Object Manager, it is �rst allocated to an
ObjectStore. The store corresponds to a �le on disk where the serialized object
will be stored. Any updates and changes to the object are then made on an
in-memory copy of the object. When the transaction commits, the changes
are �rst written to the write-ahead log, and then the object data on disk are
updated.

When an object is allocated to a store, a token for this object is created and
returned to the caller. The token is a small indirect reference to the object that
later allows retrieval of the object from the store. When an object containing
tokens is added to a store, the serialization process stops whenever a token is
reached, as the token identi�es another object that has already been added to
a (possibly di�erent) store. Objects can also be added to a store with a name
assigned to them, and can later be retrieved by name rather than from a token.
This is necessary as a starting point for the retrieval process.

When an Object Manager is instantiated, it performs some expensive ini-
tialization tasks, such as allocating space for log �les and object store �les
on disk. This initialization process is relatively slow. Therefore, a singleton
ObjectManager instance is used by all instances of ReTCP stacks a host is cur-
rently using. The assumption is that the write rate of 30 MiB/s is su�cient to
persist the combined data �ow of all ReTCP stacks.

ReTCP State Data Structure The ReTCP layer on each host needs to
store persistent information for each connection, whereby a connection is iden-
ti�ed by a peer name and a connection identi�er. For this mapping, ReTCP
uses a state table. In this table, the (peer name, connection ID) tuple is matched
to a persisted StackState object. Figure 3.3 illustrates this mapping.

When a new stack is created, the data in the state table is updated. To be
able to �nd this table after a restart, it is added to the object store under a
well-known name. The next section describes how this process works.

3.2.3 Instantiation of the ReTCP Stacks
In MQTT, the broker never initiates a connection on its own; it is always the
client's responsibility to open a connection to the broker, be it in normal oper-
ation, after an unexpected disconnect of an MQTT session, or when recovering

1The Object Manager also o�ers other degrees of �persistency�. A developer can choose to
only persist object on clean shutdown, or to not persist anything at all across restarts. In the
context of ReTCP, both these strategies are of no interest.

44 CHAPTER 3. IMPLEMENTATION

Figure 3.3: ReTCP state table

from a crash. ReTCP does not change this; a broker will not try to reestablish
disconnected ReTCP sessions, but simply wait for the client to reconnect.

The connection process is as follows.

Client Side
1. The application at the client side decides it want to connect to a broker.

It creates a new ReTCP stack by using the ReTCP stack activator.

2. During instantiation of the stack, it is checked whether an Object Manager
instance has already been created. If so, this instance will be used. Other-
wise, an Object Manager instance is created. The state table is retrieved
from the object store, using the well-known name assigned to it.

3. A lookup for previous connections to the broker is performed. The key
used for the lookup is the broker address.

4. If the lookup is successful, a token pointing to the persisted stack state is
retrieved from the table. The state is recovered from persistent storage.
The connection ID used during the previous connection is part of the
persisted stack state.
If the lookup is unsuccessful, a new stack state is created. The new stack
state will contain empty send and receive bu�ers, and a newly chosen
connection ID.

5. The client opens a TCP connection to the broker, and then sends an
ReTCP connection request. The connection request includes the client's
peer name and the connection ID either recovered from persistent state or
newly chosen in 4. If the lookup in 4. was successful, the client sets the
Reconnect bit of the connection request.

6. The client waits for the connection acknowledgment from the broker.
When it times out waiting for the acknowledgment, or the acknowledg-
ment has the Rset bit set, the connection setup process is aborted, and
an exception is raised. In the latter case, the persisted stack state is also
wiped out, because the broker signaled it does not allow the client to
reestablish the old ReTCP session.

7. The ReTCP session has successfully been (re)created.

3.2. THE RETCP NETWORK STACK FOR MQTT 45

Broker Side

1. The ReTCP listener receives the TCP connection request generated by
the client in 5, and creates a new ReTCP stack reading to and writing
from this connection socket.

2. During instantiation of the stack, it is checked whether an Object Manager
instance has already been created. If so, this instance will be used. Other-
wise, an Object Manager instance is created. The state table is retrieved
from the object store, using the well-known name assigned to it.

3. The client's ReTCP connection request is read from the network. A lookup
for previous connections to the broker is performed. The key used for the
lookup are the peer name and connection ID speci�ed in the request.

4. If the Reconnect bit of the connection request is set, but the lookup in
3. was unsuccessful, a connection acknowledgment with the Rset bit set
is sent to the client, and the connection setup process is aborted.
If the lookup in 3 was successful, but the Reconnect bit was not set by
the client, a new stack state is created, with the connection ID set by the
client. The persisted old state is replaced by the newly created one.
Otherwise, the state is recovered from persistent storage, and the connec-
tion acknowledgment is sent to the client.

5. The ReTCP session has successfully been (re)created.

Chapter 4

Testing the Implementation

In chapter 2, we the goals and expectations for the newly implemented ReTCP
MQTT stack were set, and its speci�cations de�ned. The ReTCP stack needs to
be tested for conformance with the speci�cation and ful�llment of the require-
ments. Also, several tests measuring the performance of the new stack have
been designed. This chapter describes which experiments have been executed,
and their results.

4.1 Unit and Integration Tests
Several tests were set up to assert that the di�erent parts of the stack as well as
the entire stack module do what they are supposed to do. Unit test were used to
assert the functionality of the main classes used in the stack. Most importantly,
the StackState class was unit tested to make sure that all data is persisted
correctly and can be fully restored after a crash. Tests to assert that the send-
and receive-window data structures are updated correctly when a new packet is
sent or received were designed as well.

In a stack module composed of many sub-modules each responsible for one
speci�c task, perhaps more importantly than unit-testing the sub-modules is
testing the entire module. To this end, several integration tests have been set
up.

Tests should not rely on the correctness of any of the code that they are
testing. Therefore, rather than instantiating two ReTCP stacks and letting
them communicate with each other in di�erent scenarios, all tests directly create
a socket connected to a broker running ReTCP, and write hand-crafted headers
according to the speci�cations in chapter 2 to the socket. They then read
the broker ReTCP stack's response from the socket and verify it against the
speci�cation. The implementation has passed the following tests1:

• The client can connect, and the broker's response is as de�ned in 2.3.2.
The connection id in the broker's response is the one chosen by the client.

• The client can terminate a ReTCP session by sending a Disconnect, and
gets a disconnection Acknowledgment from the broker.

1�Broker� stands short for the tested ReTCP stack run by the broker. �Client� stands for
the integration test.

46

4.2. PERFORMANCE TESTS 47

• An aborted ReTCP session can be resumed by the client. The next re-
ceived packet does not have a larger sequence number than any persisted
packet.

• Even when the state of an aborted ReTCP session exists, the broker does
not resume the session when the Reconnect bit in the connection header
is not set.

• Trying to resume a non-existing or terminated ReTCP session will result
in a connection Rset by the broker.

• Trying to resume an aborted session after the speci�ed validity period will
result in a connection Rset.

• The Ack-algorithm is executed correctly by the broker. Sending a se-
quence of packets n trough n + m results in an Ack for n + m . Sending
packet n + m + 2 thereafter still results in an Ack for n + m . Sending
the missing packet n + m + 1 results in Ack n + m + 2.

4.2 Performance Tests
When evaluating the performance of a system, many metrics can be measured,
and often they can be measured in di�erent ways. Also, performance often de-
pends on many external factors. This is especially true for network protocols
and their implementation, which depend on network bandwidth and -delay, er-
ror rates, congestion, and many more factors. Before doing any experiments, a
testing methodology has to be chosen, external factors in�uencing the perfor-
mance have to be de�ned, and a set of metrics needs to be selected.

4.2.1 Test Environment
Metrics When the new ReTCP protocol was designed in chapter 2, one of the
goals was improved performance in terms of throughput and message delivery
latency. It will be tested how well the new ReTCP implementation performs
in terms of those metrics, compared to the existing stack running the QoS 2
MQTT protocol mode.

Methodology - Simulation vs. Emulation In an early stage of this thesis,
the idea was to test the ReTCP protocol using the OMNeT++ network sim-
ulator [omnet]. OMNeT++ is a powerful discrete event simulation framework
for communication networks. Simulation models are implemented by C++-
modules, that can be hierarchically assembled into larger components and con-
nected with each other trough a high-level model description language. Many
parameters of the module connections, such as propagation delay, bandwidth,
and bit error rate, can be de�ned. OMNeT++ is a generic framework, but many
modules implementing TCP, IP, various MAC-layers, and many other protocols
are available. An extensive performance simulation of MQTT QoS levels 0 to 3
is provided in [Per05].

One advantage that simulation provides is complete control over the testing
environment. As every networking layer is completely simulated by OMNeT++,

48 CHAPTER 4. TESTING THE IMPLEMENTATION

Scenario Ethernet Wi�-5 Wi�-10
Bandwidth (Mbit/s) 100 54 54
Delay (ms) 0.3 1.5 1.5
Drop % 0 5 10
Drop Correlation n/a .8 .8

Table 4.1: Factors for di�erent Test Scenarios

it is possible, for instance, to simulate how transmissions on a wireless MAC
layer of several hosts a�ect each other. This is important for �nding out how
long transmissions get delayed due to collisions, and how many bytes are sent at
the MAC layer. The latter, as mentioned earlier, is an indicator for power con-
sumption. Measuring these metrics on real hard- and software under repeatable
conditions is a very di�cult task.

On the other hand, the drawback of using a simulation is that it tests a
protocol rather than its actual implementation. In the case of ReTCP, every
time a packet is received or sent, it is persisted to disk which involves several
disk writes. Since disk writes are slow, and there are potentially hundreds of
them per second, simulating the e�ect that persisting packets has on the overall
performance is impossible through simulation.

Therefore, the original idea of using the OMNeT++ simulation framework
was abandoned in favor of a network emulator. An emulator allows to imitate
certain properties of a testing environment without the need of special testing
hardware.

For the following measurements of throughput and latency, National Insti-
tute for Standards and Technology's NIST Net network emulator has been used
[NISTNet]. NIST Net is a Linux kernel module that acts as a special software
router for IP packets, and allows to emulate various di�erent network conditions.
Among other factors, it allows to de�ne:

• The delay of a connection, and the delay's standard deviation

• Available bandwidth of a connection

• The amount of dropped datagrams, and the drop correlation

The authors of NIST Net refer to it as a �network-in-a-box�, a single connec-
tion hop that models the behavior of an entire network. Network e�ects are
selectively applied to datagrams passing through the box depending on source
address, destination address, and optionally source and destination port and
protocol type. These rules can be added and changed at run time, without
having to restart the module. According to the developers, NIST Net can eas-
ily handle thousands of rules and high speed connections even on throw-away
hardware.

Emulated Scenarios Finally, the external factors emulated by NIST Net
have been de�ned for 3 particular test scenarios, as listed in table 4.1.

As implied by their monickers, the Ethernet scenario aims at modeling a typ-
ical wired Ethernet connection with a very low latency and no dropped packets,
whereas the two Wi� scenarios model a 802.11g connection with moderate (5%)

4.2. PERFORMANCE TESTS 49

and high (10%) loss rates. For both wireless connection, the drops are highly
correlated with a linear correlation factor of 0.8. The correlation factor indi-
cates the conditioned probability of the channel of staying in the �bad� (dropping
packets) or �good� state for the next packet. The high correlation factor is used
to model the typical error burstyness of wireless channels.

Unfortunately, since NIST Net operates at the IP level, it does not allow for
the modeling of the behavior of the Wi� MAC level. Hence, how the amount of
bytes sent at the MAC level is a�ected by the di�erent MQTT network stacks
cannot be measured with this test setup. (The delay introduced by network
collisions, additional RTS/CTS frames etc at the Wi� MAC layer can to some
degree be accurately modeled with the relatively high latency.) Fortunately,
though, as stated earlier the message exchange pattern and byte overhead of the
ReTCP protocol is identical to the one of a QoS 1 message exchange. The ratio
of sent application bytes to bytes sent at theWi� MAC layer for various scenarios
has been analyzed in [Per05], and because of their similarity, the analysis applies
to the ReTCP protocol as well.

Hardware The results of every performance test are of course greatly im-
pacted by the environment the test runs in. All tests described in the rest of
this chapter were performed on a test machine, vaticano, with the following
speci�cations:

• Processor type and -speed: Intel Pentium III, 1133 MHz

• 512 MB of RAM

• Operating System: Linux 2.6.8

• 20 GiB, 5400 rpm IDE hard disk drive, read speed ~15 MB/sec, write
speed ~10 MB/sec on an ext3 �lesystem

4.2.2 Processing Overhead
Round-Trip Times and Packet Sizes When de�ning the RTO algorithm
in 2.3.4, the assumption was that round trip times increase linearly with the
packet size, with a �xed initial latency. This is obviously true for a network link
of constant bandwidth. However, whether this also holds true for an application
processing the packets depends on the application and has to be veri�ed. If
the assumption were wrong, the RTO algorithm would yield inaccurate RTT
estimations. Inaccurate RTT estimations can have a very detrimental e�ect
on performance, thus the RTO algorithm would have to be redesigned if the
assumption were false.

A �rst, simple performance test therefore measures the implementation's
processing overhead for di�erent packet sizes. Since we are only interested in
the processing time in the stack, and not by any delay introduced by the network,
the measurements are executed over a link with virtually no delay. A broker
and a publisher are both run on vaticano and connect via the local loopback
interface.

With this setup, the round-trip times for di�erent packet sizes up to 16 MB
are measured. The publisher sends single messages to the broker, and measures
the elapsed time until an Ack for that message is received. The result is shown

50 CHAPTER 4. TESTING THE IMPLEMENTATION

Figure 4.1: Round-trip times (ms) for packet sizes between 1 byte and 16 MB

Figure 4.2: Round-trip times (ms) for packet sizes up to 10 kB

in �gure 4.1. Packet sizes above 16 MB have not been tested, because they are
completely irrelevant for the use cases of MQTT.

The �gure shows that the RTT indeed rises almost perfectly linearly with
the packet size, with an initial latency of around 4 ms for packets up to 10 kB.
Figure 4.2 shows an enlargement of the RTTs for packet sizes up to 10 kB. Here
we see that there is only a �xed delay independent of the packet size, and that
the packet size only starts to in�uence the processing times when it is above
2 kB. For this range of packet sizes, the function is not linear. However, for
the RTT calculation, this is irrelevant because the RTT algorithm dictates a
minimal RTT of 1 second, and the nearly constant delay of 4 ms up to packet
sizes above 2 kB is well below that limit.

Note that for most MQTT applications, the range of tested packet sizes is
well beyond any message size that will ever be produced. The point of the
test was to prove that the initial assumption holds true even for very unlikely
scenarios. However, in all further tests, only packet sizes2 between 10 bytes and
15 kilobytes are used to provide a more informative result for a typical MQTT
usage scenario.

Detailed Analysis of Packet Processing The next test was a more detailed
investigation of the amount of time the di�erent steps involved in the processing

2Application data, without MQTT or ReTCP headers

4.2. PERFORMANCE TESTS 51

Figure 4.3: Processing Times, Sender

of packets take up. To that end, the code was instrumented with debug output
at speci�c locations. Speci�cally, the following measurements were taken:

• Time to read a packet from the network or write it to the network (receiver
and sender, respectively)

• Time to build or read the header, and update the packet with the header
information

• Time to update the bu�er and related data structures

• Time to persist the change

• Time to push packets up to the application, and remove them from the
bu�er (receiver only)

• Time to send the Ack (receiver only)

The measurement results are depicted in �gures 4.3 and 4.4. What the �g-
ures show clearly is that the lion's share of the processing time is spent when
the transaction is committed to disk. Note that each commit comprises two
disk writes, one for the write-ahead log, and one when the object is persisted.
Considering that even fast hard drive have random seek times of around 8 mil-
liseconds, the minimal latency of 5 milliseconds is quite acceptable. (The disk
writes do not occur at random places, hence the access times can be faster
than aforementioned 8 milliseconds). Several measured points (building the
header, updating the packet, updating the data structures) took such insignif-
icant amounts of time that they could not be measured within a millisecond
accuracy and are omitted in the �gures.

Testing the RTO Algorithm The results of the previous two tests are en-
couraging, since they are a strong cue that the RTO algorithm, which produced
accurate results in the simulation, also gives good results in practice. The next
test was set up to con�rm this belief. The same 3 scenarios as in 2.3.4 have
been tested:

52 CHAPTER 4. TESTING THE IMPLEMENTATION

Figure 4.4: Processing Times, Receiver

• A constant minimal round-trip time of 2000 milliseconds. This test setup
is designed to investigate how fast the RTO algorithm (or, more precisely,
it's initial value) converges to a steady state.

• A steady change of the minimal round-trip time from 2000 milliseconds to
3000 milliseconds. The goal of this test is to �nd out how the algorithm
reacts to slow changes of the RTT.

• An abrupt change of the minimal RTT from 2000 to 3000 milliseconds, to
test the reaction to sudden changes in the network connection.

In all three test scenarios, packages with uniformly randomly selected sizes be-
tween 15 bytes and 15 kilobytes were sent. The speci�ed delays have a standard
deviation σ of 10%. 3The link delay has been set to a very large value because
the RTO algorithm demands a minimum value of 1 second, and with smaller
delays would not result in an RTO above this lower bound for the tested packet
sizes.

Because the processing delay of the ReTCP layer is negligible for the chosen
packet sizes and link delays, the bandwidth was also limited to 15kB/sec. This
introduces an additional delay between 0 and 1 seconds depending on the packet
size and simulates the processing delay of a slow host. Without this bandwidth
limitation, the packet size would have almost no in�uence on round-trip times,
and the test would simply test the standard TCP RTO algorithm. Figures 4.5
trough 4.7 show the calculated RTO normalized to MSS-size (1460 bytes).

The �gures are in very good accordance with what was to be expected from
the simulation. The initial convergence to the constant RTT occurs after 10 to
15 received Acks (�gure 4.5). The ReTCP algorithm reacts somewhat more
pronounced to the steady change of the RTT than TCP's RTO would; the
graph shows a few noticeable spikes. This is to be expected, as the change of

3Instead of a normal distribution of the delays, NIST Net by default uses a �heavy tail�
distribution which more closely models the delay patterns found in real networks. This default
distribution was used, so the test somewhat di�ers from the simulation, but is executed in a
more realistic environment.

4.2. PERFORMANCE TESTS 53

Figure 4.5: Convergence to constant RTT

Figure 4.6: Slow RTT increase from 2 to 3 seconds

Figure 4.7: Abrupt RTT change from 2 to 3 seconds

54 CHAPTER 4. TESTING THE IMPLEMENTATION

Figure 4.8: Throughput, Ethernet

Figure 4.9: Throughput, Wi�-5

the RTT induces a change of the scaling variance, and the broad range of tested
packet sizes ampli�es this variance. The RTO quickly converges to a stable
value again once the RTT no more changes. (�gure 4.6). In the last �gure (4.7),
the exponential backo� of the RTO is clearly visible. Again, after around 20
received Acks the RTO has converged to a steady state.

4.2.3 Throughput
Throughput was tested under under the 3 scenarios Ethernet, Wi�-5, and Wi�-
10 as de�ned above. The test is performed by sending packets of sizes ranging
from 10 bytes to 100 kilobytes from a publisher to a broker, over a link with the
emulated characteristics de�ned in table 4.1. For each packet size, 1500 packets
of that size are sent. Debug code is added to the broker that keeps track of the
amount of received packets, their size, and the elapsed time. Figures 4.8 to 4.10
show the measurement results. Please not that the x-axis is not scaled linearly.

The measurement results for the Ethernet case are pretty similar for ReTCP
and QoS 2. This is not surprising: since the cost of persisting a message is
relatively high, as it involves several disk writes, and the latency of the link is

4.2. PERFORMANCE TESTS 55

Figure 4.10: Throughput, Wi�-10

almost negligible, the time needed for disk writes prevails and the additional
round-trip times the QoS 2 protocol needs, in which time no data packets can
be sent, do not greatly a�ect the measurement result.

The situation changes when loss is present on the network. The publisher of
a QoS 2 message has to wait 2 round-trip times (until the Pubcomp is received)
before it can send the next message. The higher the error probability of the
channel is, the more likely it is that 1 of the 4 messages involved in a QoS 2
publication gets dropped on the TCP-level and will be resent by TCP when it's
RTO expires. Together with the already larger initial link delay, this greatly
increases the time during which the publisher is completely idle, waiting for
the outstanding Puback. In the Wi�-5 scenario, this e�ect is already clearly
obvious; in the Wi�-10 scenario, it is even more pronounced.

Clearly, sequentially completing the exchange of 4 messages until the next
message can be sent is a big drawback of the QoS 2 protocol, especially for high
link delays and high channel error probabilities. The available bandwidth is
highly underutilized, leading to poor throughput. ReTCP, as expected, provides
better usage of the available bandwidth. For large packet sizes, the advantage
of ReTCP is less distinctive; here the time needed to transmit a packet over the
lossy channel dominate the e�ects of using di�erent protocols.

4.2.4 Message Delivery Latency
The next test measures the delivery latency of messages. The delivery latency
is the time when the sending application hands a message to the network stack
until it is available to the receiving application. Note that this is di�erent from
the round-trip time. The reason for measuring delivery latencies rather than
RTTs is that for real-time applications, the delivery latency is the important
metric.

Good performance in terms of low delivery latency is perhaps more impor-
tant for most MQTT applications, as most MQTT data sources are unlikely
to produce data amounts suited to fully utilize the available bandwidth. Low
latencies, on the other hand, are desired in many real-life applications.

Again, the three test scenarios described before are used. To measure the

56 CHAPTER 4. TESTING THE IMPLEMENTATION

Figure 4.11: Delivery latency (ms), Ethernet

Figure 4.12: Delivery latency (ms), Wi�-5

time the message needs to get from the publisher application to the broker ap-
plication, the publisher places a milliseconds-timestamp in the message. Since
both broker and publisher run on the same machine, the publisher can imme-
diately deduce the amount of passed time from the timestamp by comparing it
with its own clock. Once again, for each message size the test is executed 1500
times, and the average delivery delay measured. Figures 4.11, 4.12, and 4.13
show the results.

The results are as expected: the ReTCP delivery latency is generally below
the one of QoS 2. This is not surprising, as QoS 2 needs one RTT more until the
message is delivered. In the Ethernet case, the di�erence between the latencies
is fairly small. This is because the emulated Ethernet link has virtually no
delay. For the two Wi� scenarios, the there is a noticeable di�erence between
the latencies.

In all 3 cases, the test con�rms the assumption that ReTCP performance in
terms of delivery latency is superior to the one of the QoS 2 protocol.

4.2. PERFORMANCE TESTS 57

Figure 4.13: Delivery latency (ms), Wi�-10

Chapter 5

Conclusion and Future Work

5.0.5 Future Work
This section is a list of possible future work based on the results of this master's
thesis.

• A generic ReTCP implementation.
While the presented ReTCP protocol is useful for many di�erent appli-
cations, an implementation is only provided in the context of the MQTT
network stack. A general-purpose implementation providing an easy-to-
use interface for applications wishing to communicate in a failure-resilient
way is desirable. This implementation could for example be written as a
C-based kernel module.

• UDP-based ReTCP protocol extension.
ReTCP uses many of the same mechanism as TCP. Most notably, pack-
ets are identi�ed by unique sequence numbers de�ning an ordering, and
packets are resent when an acknowledgment is not received in a timely
manner. To some degree (namely, whenever the underlying network and
the applications do not fail), the work performed by ReTCP and TCP is
redundant. Therefore, an extended ReTCP protocol combining the fea-
tures of TCP and UDP could be designed. This protocol could use UDP
as the underlying transport mechanism.
Because ReTCP explicitly relies on TCP's �ow control and congestion
avoidance mechanisms, these mechanisms must be added to a UDP-based
ReTCP protocol.

• End-to-end �ow control for MQTT.
Currently, when QoS 1 or QoS 2 messages cannot be delivered to a recipi-
ent because the recipient cannot receive them fast enough, the broker adds
them to a queue in memory. This can lead to a situation where the broker
needs more memory than is available. It cannot simply throw away mes-
sages in that case, because it must guarantee delivery for messages with a
QoS level above 0. This situation is currently not addressed; a broker can
be crashed by overwhelming it with messages for a slow receiver.
When using ReTCP, a broker can write the messages to the ReTCP level,
and they will be stored in the outgoing bu�er. For a slow receiver, the

58

59

bu�er will eventually become full, and further attempts to add packets to
it will block.
Instead, a noti�cation mechanism could be added allowing the ReTCP
layer to inform the broker that the bu�er is running full. Several ways
how the broker then reacts to this situation are conceivable: it could dis-
connect receivers that are too slow, disconnect senders that are too fast,
or even inform a fast sender that it should transmit new messages at a
lower rate.

5.0.6 Conclusions and Retrospection
Designing and implementing a persistency layer for MQTT was a challenging,
but also very rewarding and instructional task. The problems encountered when
designing a network protocol are manifold, and not all of them are obvious. Per-
haps the most intriguing problem that posed itself was the design of an RTO
algorithm that computes accurate predictions of round-trip times for packets
with sizes in the range of many orders of magnitude; a problem that was over-
looked until a very late phase of the design process.

Some routes taken during the past 6 months also turned out to be dead
ends. For example, the earliest implementation of ReTCP used a selective
acknowledgment mechanism. The Sack algorithm is not only more complex to
implement and computationally more expensive, it is also useless in most cases
since TCP already provides in-order delivery. The only time when a selective
acknowledgment is useful for ReTCP is when a ReTCP-session is reestablished;
however, the fast retransmit algorithm solves this problem in a much simpler
way.

The provided implementation ful�lls the requirements de�ned during the
design phase. Several experiments have been carried out, that showed that the
implementation indeed behaves as expected and provides increased throughput
as well as lower delivery latencies compared to the currently used protocol.
Integration tests proved that ReTCP can deal with network failures as well as
application failures, and no packets are lost once an application has handed
them to the ReTCP stack module.

Choosing emulation over simulation for the performed experiments was a
good choice, as it provides a higher level of con�dence in the measured results.
By using emulation, not only the protocol was tested, but also the actual imple-
mentation, including the e�ects of many concurrent disk-writes that a simulation
can hardly model accurately.

Moreover, applying performance tests to the real code in fact yielded sev-
eral performance improvements. Most notably, an early implementation of the
StackState class simply contained 2 ArrayLists of tokens representing repre-
senting the send- and the receive-bu�er, respectively. The entire object, and
hence both bu�ers, were persisted when one of the bu�ers was updated. This
increased the amount of data written to disk for each update, and a newer im-
plementation that persists the bu�ers independently of each other shows better
results in the performance tests.

The previous section lists some possible extensions and improvements to the
presented ReTCP implementation. I hope that the ideas and results provided
by this thesis inspire further development of this interesting project.

Appendix A

RTO Calculation

A.1 TCP RTO Calculation
The RTO (retransmission timeout) algorithm describes how a peer calculates
its retransmission timeout. The choice of particular parameters is beyond the
scope of this document; they are suggested by the research of Jacobson et al.
([JK88]).

2 state variables, SRTT (smoothed round-trip time) and RTTV AR (round-
trip time variance) are maintained. G refers to the clock granularity of the
implementation, which is 10 milliseconds in the implemented prototype.

Algorithm 1 shows the RTO calculation, and algorithm 2 shows how the
retransmission timer is managed using the calculated RTO.

A.2 ReTCP RTO Calculation
Algorithms 4 and 3 de�ne how the RTO is for di�erent packet sizes is calculated
and updated in ReTCP.

Algorithm 1 RTO Calculation, as per RFC 2988.
1. RTO ← 3 seconds
2. when the first RTT measurement R is made:

SRTT ← R
RTTVAR ← R/2
RTO ← SRTT + max (G, K*RTTVAR)

where K=4
3. for each subsequent measurement R':

RTTVAR ← (1 - beta) * RTTVAR + beta * |SRTT - R'|
SRTT ← (1 - alpha) * SRTT + alpha * R'
RTO ← max (1 second, SRTT + max (G, K*RTTVAR))

where alpha=1/8, beta=1/4

60

A.2. RETCP RTO CALCULATION 61

Algorithm 2 Retransmission timer management, as per RFC 2988
1. Every time a packet containing data is sent (including a

retransmission), if the timer is not running, start it
running so that it will expire after RTO seconds (for the
current value of RTO).

2. When all outstanding data has been acknowledged, turn off
the retransmission timer.

3. When an ACK is received that acknowledges new data,
restart the retransmission timer so that it will expire
after RTO seconds (for the current value of RTO).

When the retransmission timer expires, do the following:
4. Retransmit the earliest segment that has not been

acknowledged by the TCP receiver.
5. The host MUST set RTO ← RTO * 2 ("back off the timer").

A maximum value ay be used to provide an upper bound to
this doubling operation.

6. Start the retransmission timer, such that it expires after
RTO seconds (for the value of RTO after the doubling
operation outlined in 5.).

Algorithm 3 ReTCP RTO Scaling
function scaleRTO(packetSize) {

estimates the RTO for a packet with the given size,
based on previous RTT measurements for various packet
sizes
dist ← packetSize - SSIZE
r ← RTO + dist * SSCALE + |dist| * SCALEVAR
if (dist < 0); then

return max(1000, min(r, RTO, RTO_MAX))
else

return max(1000, min(r, RTO_MAX))
fi

}

62 APPENDIX A. RTO CALCULATION

Algorithm 4 ReTCP RTO Calculation
#variables:
RTO: retransmission time-out
SRTT: smoothed round-trip time
RTTVAR: round-trip time variance
SSIZE: smoothed packet-size
SSCALE: smoothed scaling factor
SCALEVAR: scaling factor variance
#constants:
K: weighting of variance
ALPHA, BETA: smoothing factors for RTO, variance
RTO_MAX: upper bound for RTO

1. RTO ← 6000
SSIZE ← 1
SSCALE ← 3000
SCALEVAR ← 3000

2. when the first RTT measurement R is made, for
packet with size p:

SSCALE ← R/p
SCALEVAR ← SSCALE/2
SSIZE ← p
SRTT ← R
RTTVAR ← R/2
RTO ← min(RTO_MAX, SRTT+max(G, K*RTTVAR))

where K=4

3. subsequent RTT measurements R', for packet
with size p:

if (p 6= SSIZE); then
update the scaling factor
s ← (R' - SRTT) / (p - SSIZE)
s ← max(0, min(SRTT/SSIZE+SCALEVAR, s))
SCALEVAR ← (1 - BETA) * SCALEVAR + BETA * |SSCALE - s|
SSCALE ← (1 - ALPHA) * SSCALE + ALPHA * s

fi
scale the measurement R' according to scaling factor,
and use scaled value to update RTO
R̂ ← R' - (p - SSIZE) * SSCALE
RTTVAR ← (1 - BETA) * RTTVAR + BETA * |SRTT - R̂|
SRTT ← (1 - ALPHA) * SRTT + ALPHA * R̂
r ← SRTT + max(G, K*RTTVAR)
RTO ← max(1000, min(r, RTO_MAX))

where ALPHA=1/8, BETA=1/4

Bibliography

[MQTT] MQ Telemetry Transport.
http://www.mqtt.org/

[MQ] WebSphere MQ.
http://www-306.ibm.com/software/integration/wmq/

[norw] Pay-as-you-drive car cover tested.
http://news.bbc.co.uk/2/hi/business/3573912.stm. BBC News,
August 2004.

[RFC793] Transmission Control Protocol. RFC 793, September 1981.

[MQTT-spec] MQTT Protocol Speci�cation.
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/
index.jsp?topic=/com.ibm.etools.mft.doc/ac10840_.htm

[RAI99] Rajiv Chakravorty, Andrew Clark, Ian Pratt: GPRSWeb: Opti-
mizing the Web for GPRS Links. University of Cambridge Com-
puter Laboratory, 1999.

[SHB+04] Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geo�Werner
Allen, Mat Welsh: Simulating the Power Consumption of
Large-Scale Sensor Network Applications. ACM 1-58113-879-
2/04/0011.

[Per05] Julio Perez: MQTT Performance Analysis with OMNeT++.
Master's Thesis, September 2005.

[SS83] Dale Skeen, Michael Stonebraker: A Formal Model of Crash Re-
covery in a Distributed System. IEEE Transactions on Software
Engineering, Vol. SE-9, No. 3, may 1983.

[LSP82] Leslie Lamport, Robert Shostak, Marshall Peas: The Byzan-
tine Generals Problem. ACM Transactions on Programming Lan-
guages and Systems, Vol. 4, No. 3, pp 382-401, July 1982.

[HOI+05] Osamu Honda, Hiroyuki Ohsaki, Makoto Imase, Mika Ishizuka,
Junichi Murayama: Understanding TCP over TCP: e�ects of
TCP tunneling on end-to-end throughput and latency. Proceed-
ings of the SPIE, Volume 6011, pp. 138-146, 2005.

[Titz01] Olaf Titz: Why tcp over tcp is not a good idea.
http://sites.inka.de/~bigred/devel/tcp-tcp.html

63

64 BIBLIOGRAPHY

[RFC1122] Robert Braden: Requirements for Internet Hosts - Communica-
tion Layers. RFC 1122, October 1989.

[RFC896] John Nagle: Congestion Control in IP/TCP. RFC 896, January
1984.

[RFC2988] V. Paxson, M. Allman: Dale Skeen, Michael Stonebraker: Com-
puting TCP's Retransmission Timer. RFC 2988, November 2000.

[JK88] V. Jacobson, M. Karels: Congestion Avoidance and Control.
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

[KP87] P. Karn, C. Partridge: Improving Round-Trip Time Estimates
in Reliable Transport Protocols. ACM Transactions on Computer
Systems, Vol. 9, No. 4, pp. 364-373, 1991.

[RFC879] J. Postel: TCP maximum segment size and related topics. RFC
879.

[xkernel] The x-kernel Protocol Framework.
http://www.cs.arizona.edu/projects/xkernel/

[omnet] OMNeT++ Discrete Event Simulation System.
http://www.omnetpp.org/

[NISTNet] National Institute of Standards and Technology: NIST Net Home
Page.
http://www-x.antd.nist.gov/nistnet/

[CD03] Mark Carson, Darrin Santay: NIST Net � A Linux-based Network
Emulation Tool. Computer Communication Review, June 2003.

